1、BSI Standards Publication Communication networks and systems for power utility automation Part 90-12: Wide area network engineering guidelines PD IEC/TR 61850-90-12:2015National foreword This Published Document is the UK implementation of IEC/TR 61850-90- 12:2015. The UK participation in its prepara
2、tion was entrusted to Technical Committee PEL/57, Power systems management and associated information exchange. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract.
3、Users are responsible for its correct application. The British Standards Institution 2015. Published by BSI Standards Limited 2015 ISBN 978 0 580 89479 4 ICS 33.200 Compliance with a British Standard cannot confer immunity from legal obligations. This Published Document was published under the autho
4、rity of the Standards Policy and Strategy Committee on 31 August 2015. Amendments/corrigenda issued since publication Date Text affected PUBLISHED DOCUMENT PD IEC/TR 61850-90-12:2015 IEC TR 61850-90-12 Edition 1.0 2015-07 TECHNICAL REPORT Communication networks and systems for power utility automati
5、on Part 90-12: Wide area network engineering guidelines INTERNATIONAL ELECTROTECHNICAL COMMISSION ICS 33.200 ISBN 978-2-8322-2806-7 Registered trademark of the International Electrotechnical Commission Warning! Make sure that you obtained this publication from an authorized distributor. colour insid
6、e PD IEC/TR 61850-90-12:2015 2 IEC TR 61850-90-12:2015 IEC 2015 CONTENTS FOREWORD . 11 INTRODUCTION . 13 1 Scope 15 2 Normative references 15 3 Terms, definitions, abbreviations, acronyms and symbols 20 3.1 Terms and definitions 20 3.2 Abbreviations and acronyms . 25 3.3 Network diagram symbols . 32
7、 4 Wide Area Communication in electrical utilities 34 4.1 Executive summary . 34 4.2 Use Case: ENDESA, Andalusia (Spain) 36 4.3 Typical interface between a substation and the WAN 38 4.4 WAN characteristics and actors 39 4.5 SGAM Mapping . 40 4.6 Network elements and voltage level 42 4.7 WAN interfac
8、es in substation automation (IEC 61850-5) . 43 4.8 Logical interfaces and protocols in the TC57 Architecture IEC TR 62357 44 4.9 Network traffic and ownership . 45 5 WAN overall requirements and data transmission metrics 45 5.1 Traffic types 45 5.2 Quality of Service (QoS) of TDM and PSN 46 5.3 Late
9、ncy calculation . 46 5.3.1 Latency components 46 5.3.2 Propagation delay 46 5.3.3 Residence delay 47 5.3.4 Latency accumulation 47 5.3.5 Example: latency of a microwave system . 47 5.3.6 Latency and determinism . 47 5.3.7 Latency classes in IEC 61850-5 . 48 5.4 Jitter . 50 5.4.1 Jitter definition .
10、50 5.4.2 Jitter classes in IEC 61850 51 5.5 Latency symmetry and path congruency . 51 5.6 Medium asymmetry . 51 5.7 Communication speed symmetry . 52 5.8 Recovery delay . 52 5.9 Time accuracy 52 5.9.1 Time accuracy definition 52 5.9.2 Time accuracy classes. 53 5.10 Tolerance against failures . 54 5.
11、10.1 Failure . 54 5.10.2 Reliability. 54 5.10.3 Redundancy principles. 55 5.10.4 Redundancy and reliability . 55 5.10.5 Redundancy checking 56 5.10.6 Redundant layout: single point of failure 57 PD IEC/TR 61850-90-12:2015IEC TR 61850-90-12:2015 IEC 2015 3 5.10.7 Redundant layout: cross-redundancy .
12、57 5.10.8 Maintainability . 58 5.10.9 Availability . 58 5.10.10 Integrity . 60 5.10.11 Dependability . 62 5.10.12 Example: Dependability of GOOSE transmission . 62 6 Applications analysis . 62 6.1 Application kinds . 62 6.2 Teleprotection (IF2 & IF11) . 63 6.2.1 Teleprotection schemes . 63 6.2.2 Tel
13、eprotection data kinds . 64 6.2.3 Teleprotection requirements for latency . 64 6.2.4 Teleprotection requirements for latency asymmetry . 64 6.2.5 Teleprotection requirements for integrity 64 6.2.6 Teleprotection summary 65 6.3 Telecontrol (IF1, IF6) 65 6.4 Substation to control centre (IF10) 66 6.5
14、CMD (IF7) . 67 6.5.1 CMD overview . 67 6.5.2 CMD communication requirements 67 6.6 Control Centre to Control Centre (IF12) 67 6.7 Wide Area Monitoring System (IF13) . 68 6.7.1 WAMS overview 68 6.7.2 WAMS topology . 68 6.7.3 WAMS communication requirements 70 6.8 Wide area monitoring, protection and
15、control (WAMPAC) IF13 71 6.8.1 WAMPAC overview 71 6.8.2 WAMPAC communication requirements . 71 6.8.3 Use case WAMPAC . 73 6.9 Wind turbines and wind virtual power plants 74 6.10 Distributed Energy and Renewables (DER) . 74 6.11 Summary of communication requirements for WAN . 74 7 Wide-area and real-
16、time network technologies. 75 7.1 Introduction . 75 7.2 Topology . 75 7.3 Overview. 76 7.4 Layer 1 (physical) transmission media 78 7.4.1 Summary . 78 7.4.2 Installation guidelines 78 7.4.3 Metallic lines . 79 7.4.4 Power line carrier (PLC) 80 7.4.5 Radio transmission 84 7.4.6 Fiber optics 89 7.4.7
17、Layer 1 redundancy . 96 7.4.8 Use case: Diverse redundancy against extreme contingencies (Hydro- Quebec) 97 7.4.9 Layer 1 security . 98 7.5 Layer 1,5 (physical) multiplexing . 98 7.6 Layer 2 (link) technologies 99 PD IEC/TR 61850-90-12:2015 4 IEC TR 61850-90-12:2015 IEC 2015 7.6.1 Telephony technolo
18、gies . 99 7.6.2 SDH/SONET 101 7.6.3 Optical Transport Network . 111 7.6.4 Ethernet 112 7.6.5 Ethernet over TDM 122 7.6.6 Carrier Ethernet . 123 7.6.7 Audio-Video Bridging . 125 7.6.8 Provider Backbone Bridge (PBB) . 125 7.6.9 Multiprotocol Label Switching (MPLS) 127 7.7 Layer 3 (network) technologie
19、s . 135 7.7.1 Internet Protocol (IP) . 135 7.7.2 IP QoS. 148 7.7.3 IP multicast 151 7.7.4 IP redundancy . 152 7.7.5 IP security . 152 7.7.6 IP communication for utilities . 154 7.7.7 IP summary . 156 7.8 Layer 4 (transport) protocols . 157 7.8.1 Transport layer encapsulation 157 7.8.2 UDP 157 7.8.3
20、TCP . 158 7.8.4 Layer 4 redundancy . 159 7.8.5 Layer 4 security . 159 7.9 Layer 5 (session) and higher . 159 7.9.1 Session layer . 159 7.9.2 Routable GOOSE and SMV . 160 7.9.3 Example: C37.118 transmission . 160 7.9.4 Session protocol for voice and video transmission . 161 7.9.5 Application interfac
21、e redundancy . 161 7.9.6 Application device redundancy 162 7.10 Protocol overlay tunneling 162 7.10.1 Definitions . 162 7.10.2 Tunneling principle 163 7.10.3 Tunneling Layer 2 over Layer 3 . 163 7.10.4 Use Case: Tunneling GOOSE and SMV in IEC 61850 164 7.10.5 Circuit emulation service (CES) . 165 7.
22、11 Virtual Private Networks (VPNs) . 169 7.11.1 VPN principles . 169 7.11.2 L2VPNs . 169 7.11.3 L2VPN multicast on MPLS . 171 7.11.4 L3VPN . 171 7.11.5 VPN mapping to application . 173 7.12 Cyber Security 176 7.12.1 Security circles 176 7.12.2 Network security 177 7.12.3 Access Control 180 7.12.4 Th
23、reat detection and mitigation 180 7.12.5 Security architecture 184 7.12.6 Application (end-to-end) communication security . 185 PD IEC/TR 61850-90-12:2015IEC TR 61850-90-12:2015 IEC 2015 5 7.12.7 Security for synchrophasor (PMU) networks (IEC TR 61850-90-5) . 186 7.12.8 Additional recommendations 18
24、7 7.13 QoS and application-specific engineering 187 7.13.1 General . 187 7.13.2 SDH/SONET QoS and SLA 187 7.13.3 PSN QoS and SLA . 187 7.13.4 Application and priority 188 7.13.5 QoS chain between networks . 188 7.13.6 QoS mapping between networks 189 7.13.7 QoS engineering 190 7.13.8 Customer restri
25、ctions . 191 7.13.9 Clock services . 191 7.14 Configuration and OAM . 191 7.14.1 Network configuration 191 7.14.2 OAM 191 7.15 Time synchronization 193 7.15.1 Oscillator stability 193 7.15.2 Mutual synchronization 193 7.15.3 Direct synchronization . 194 7.15.4 Radio synchronization . 194 7.15.5 GNSS
26、 synchronization . 195 7.15.6 Frequency distribution . 195 7.15.7 Time distribution 196 7.15.8 PTP telecommunication profiles . 203 7.15.9 PTP over MPLS . 203 7.15.10 Comparison of time distribution profiles based on IEC 61588 . 203 7.15.11 Use Case: Synchrophasor time synchronization 205 7.15.12 Us
27、e case: Atomic Clock Hierarchy . 205 8 Use cases . 206 8.1 Use case: Current differential teleprotection system (Japan) . 206 8.2 Use case: SDH / MPLS network (Japan) . 210 8.3 Use Case: Wide area stabilizing control system (Japan) . 211 8.4 Use Case: experimental PMU-based WAMPAC system . 213 Bibli
28、ography 216 Figure 1 Symbols . 33 Figure 2 Substation locations in Andalusia . 36 Figure 3 Topology of the Andalusia network . 37 Figure 4 Cabinet of the substation edge node 38 Figure 5 Communication interfaces in a SEN . 39 Figure 6 Communicating entities 40 Figure 7 SGAM communication model 41 Fi
29、gure 8 Principle of grid voltage level and network technology 42 Figure 9 Communication paths and interfaces 43 Figure 10 IEC TR 62357 Interfaces, protocols and applications 44 Figure 11 Composition of end-to-end latency in a microwave relay 47 Figure 12 Example of latency in function of traffic 48
30、PD IEC/TR 61850-90-12:2015 6 IEC TR 61850-90-12:2015 IEC 2015 Figure 13 Jitter for two communication delay types. . 50 Figure 14 Precision and accuracy definitions . 52 Figure 15 Redundancy of redundant systems . 56 Figure 16 Redundancy calculation . 56 Figure 17 Redundancy layout with single point
31、of failure 57 Figure 18 Redundancy layout with cross-coupling 58 Figure 19 Availability definitions . 59 Figure 20 Residual error rate in function of the BER 61 Figure 21 Principle of synchrophasor transmission . 69 Figure 22 Target phenomena for WAMPAC 71 Figure 23 Example of main function and gene
32、ral information flow 72 Figure 24 PMUs and data flow between TSO and regional data hubs . 73 Figure 25 Network topology (Carrier Ethernet) . 76 Figure 26 Phase-to-ground coupling for PLC 80 Figure 27 HV PLC coupling with suspended line traps . 81 Figure 28 Phase to phase signal coupling for PLC . 81
33、 Figure 29 Phase-to-phase signal coupling 82 Figure 30 Power line carrier, line traps . 83 Figure 31 Terrestrial microwave link 85 Figure 32 Layer 2 transport on radio systems 88 Figure 33 Radio network in feeder automation . 89 Figure 34 ADSS fiber cable 90 Figure 35 ADSS installation with splicing
34、 box . 91 Figure 36 OPGW in ground cable . 91 Figure 37 OPGW with two “C”-tubes with each 32 fibers 92 Figure 38 OPGW fibers 93 Figure 39 Splicing box . 94 Figure 40 WDM over one fiber . 95 Figure 41 OCh optical components 95 Figure 42 Optical link with microwave back-up . 97 Figure 43 Picture of pa
35、rtially destroyed 735 kV line 98 Figure 44 E1 and E2 channel . 100 Figure 45 Digital Transmission Hierarchy (T Standards) 100 Figure 46 Digital Transmission Hierarchy (E-standard) 101 Figure 47 Example of an SDH network for utilities 102 Figure 48 SONET multiplexing hierarchy 103 Figure 49 SDH multi
36、plexing hierarchy 103 Figure 50 SDH/SONET with point-to-point topology . 105 Figure 51 SDH/SONET with linear topology . 105 Figure 52 BLSR/BSHR topology in normal conditions (from A to D) 107 Figure 53 BLSR/BSHR topology in failure conditions 107 Figure 54 UPSR/USHR topology in normal conditions 108
37、 Figure 55 UPSR/USHR topology in failure conditions . 109 PD IEC/TR 61850-90-12:2015IEC TR 61850-90-12:2015 IEC 2015 7 Figure 56 Example of information flow relationship in OTN 112 Figure 57 IEEE 802.3 (Ethernet) frame format . 113 Figure 58 IEEE 802.3 (Ethernet) topology with RSTP switches (IEC TR
38、61850-90-4) . 114 Figure 59 IEEE 802.1Q-tagged Ethernet frame format . 115 Figure 60 Direct Ethernet with VLAN in substation-to-substation transmission . 116 Figure 61 Substation-to-substation Layer 2 transmission tunneled over IP . 117 Figure 62 PRP structure (within and outside a substation) . 118
39、 Figure 63 HSR ring connecting substations and control centre . 118 Figure 64 MACsec frame format . 120 Figure 65 IEEE 802.1X principle 121 Figure 66 Ethernet for substation-to-substation communication 122 Figure 67 Packets over TDM 123 Figure 68 IEEE 802.1Q/ad/ah network configuration 126 Figure 69
40、 Case of IEEE 802.1Q/ad network for utility . 127 Figure 70 Basic MPLS architecture 128 Figure 71 Example of MPLS frame format with IPv4 payload 129 Figure 72 MPLS building blocks . 130 Figure 73 MPLS network architecture for utilities . 131 Figure 74 IP/MPLS and MPLS-TP features 132 Figure 75 MPLS-
41、TP redundant routing . 134 Figure 76 Ethernet frame with IP network header . 136 Figure 77 Mapping of IPv4 to Ethernet frames . 137 Figure 78 Mapping of IPv6 to Ethernet frames . 140 Figure 79 IPv6 unicast address structure . 141 Figure 80 IPv6 ULA address structure 142 Figure 81 IPv6 link local add
42、ress structure . 142 Figure 82 Mapping of IPv4 to IPv6 addresses 145 Figure 83 IPv6 evolution 147 Figure 84 IEC 61850 stack with IPv4 and IPv6 . 148 Figure 85 DiffServ codepoint field 150 Figure 86 Unidirectional protocol independent multicast . 151 Figure 87 Bidirectional protocol independent multi
43、cast . 152 Figure 88 Frame format for IPsec (authenticated) 153 Figure 89 Frame format for IPsec (encrypted) 153 Figure 90 Layer 3 direct connection within same address space 154 Figure 91 Connecting substations to SCADA by a NAT 155 Figure 92 Substation to SCADA connection over ALG 156 Figure 93 Et
44、hernet frame with UDP transport layer 157 Figure 94 UDP header . 158 Figure 95 TCP header 158 Figure 96 Session and presentation layers for MMS . 160 Figure 97 Session and presentation layers for R-GOOSE 160 Figure 98 IEEE C37.118 frame over UDP . 161 PD IEC/TR 61850-90-12:2015 8 IEC TR 61850-90-12:
45、2015 IEC 2015 Figure 99 Redundant network transmission handled by the application layer . 161 Figure 100 Tunneling in IEC TR 61850-90-1 163 Figure 101 L2TP transporting Layer 2 frames over IP 164 Figure 102 Tunneling GOOSE over IP in IEC TR 61850-90-5 . 165 Figure 103 Pseudo-wire principle . 166 Fig
46、ure 104 Non-IP voice communication over PSN 167 Figure 105 Circuit emulation over PSN 168 Figure 106 L2VPNs VPWS and VPLS 170 Figure 107 L3VPN . 171 Figure 108 Emulation of L3VPN by L2VPN and global router . 172 Figure 109 Tele-protection over VPWS, . 174 Figure 110 WAMS over VPLS 175 Figure 111 VPN
47、 for IP-based SCADA/EMS traffic 176 Figure 112 VPN deployment options 179 Figure 113 IP network separator 181 Figure 114 Security architecture (using segmentation and perimeter security) . 185 Figure 115 QoS chain 189 Figure 116 Timing pulse transmission methods of legacy teleprotection devices 194
48、Figure 117 SyncE application . 195 Figure 118 Synchronous Ethernet Architecture 196 Figure 119 SNTP clock synchronization and network delay measurement 197 Figure 120 Model of GMC, two BCs in series and SC over Layer 3 200 Figure 121 Timing diagram of PTP (end-to-end, 2-step, BCs) 200 Figure 122 Timing diagram of PTP (peer-to-peer, 2-step TCs) . 201 Figure 123 Substations synchronization over WAN 205 Figure 124 Example of synchronization network . 206 Figure 125 Current differential 1:1 configuration 207 Figure 126 Network configuration for centralized multi-terminal line protection
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1