ImageVerifierCode 换一换
格式:PDF , 页数:30 ,大小:2MB ,
资源ID:397762      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-397762.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(BS PD IEC TS 60871-3-2015 Shunt capacitors for AC power systems having a rated voltage above 1 000 V Protection of shunt capacitors and shunt capacitor banks《额定电压大于1000 V的.pdf)为本站会员(赵齐羽)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

BS PD IEC TS 60871-3-2015 Shunt capacitors for AC power systems having a rated voltage above 1 000 V Protection of shunt capacitors and shunt capacitor banks《额定电压大于1000 V的.pdf

1、BSI Standards Publication Shunt capacitors for AC power systems having a rated voltage above 1 000 V Part 3: Protection of shunt capacitors and shunt capacitor banks PD IEC/TS 60871-3:2015National foreword This Published Document is the UK implementation of IEC/TS 60871-3:2015. The UK participation

2、in its preparation was entrusted to Technical Committee PEL/33, Power capacitors. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its

3、correct application. The British Standards Institution 2015. Published by BSI Standards Limited 2015 ISBN 978 0 580 85306 7 ICS 29.240.99; 31.060.70 Compliance with a British Standard cannot confer immunity from legal obligations. This Published Document was published under the authority of the Stan

4、dards Policy and Strategy Committee on 31 July 2015. Amendments/corrigenda issued since publication Date Text affected PUBLISHED DOCUMENT PD IEC/TS 60871-3:2015 IEC TS 60871-3 Edition 2.0 2015-06 TECHNICAL SPECIFICATION Shunt capacitors for AC power systems having a rated voltage above 1 000 V Part

5、3: Protection of shunt capacitors and shunt capacitor banks INTERNATIONAL ELECTROTECHNICAL COMMISSION ICS 29.240.99; 31.060.70 ISBN 978-2-8322-2755-8 Registered trademark of the International Electrotechnical Commission Warning! Make sure that you obtained this publication from an authorized distrib

6、utor. PD IEC/TS 60871-3:2015 2 IEC TS 60871-3:2015 IEC 2015 CONTENTS FOREWORD 5 1 Scope .7 2 Normative references 7 3 Terms and definitions 7 4 Internal fuses 7 4.1 General 7 4.2 Fuse characteristics 8 4.2.1 Rated current .8 4.2.2 Rated discharge capability .8 4.2.3 Disconnecting capability 8 4.2.4

7、Voltage withstand capability after operation 8 4.3 Influence of capacitor element configuration on capacitor life.8 4.3.1 Capacitor with all elements connected in parallel 8 4.3.2 Capacitor with elements connected in series and parallel .8 5 External fuses .8 5.1 General 8 5.2 Fuse characteristics 9

8、 5.2.1 Rated current .9 5.2.2 Rated voltage 9 5.2.3 Time-current characteristics .9 5.2.4 Discharge capability . 10 5.3 Fuse types 10 5.3.1 General . 10 5.3.2 Expulsion fuses . 10 5.3.3 Current-limiting fuses . 11 5.3.4 Combination current-limiting/expulsion fuses . 11 5.4 Influence of capacitor ban

9、k configuration on fuse selection 11 5.4.1 Single series section grounded star and delta banks 11 5.4.2 Single series section ungrounded star banks 11 5.4.3 Multiple series section banks . 11 5.5 Coordination with case rupture curves . 11 6 Unbalance detection 12 6.1 Operation 12 6.2 Types of unbala

10、nce protection . 12 6.2.1 Neutral current (Figure 3) . 12 6.2.2 Neutral voltage (Figure 4) 12 6.2.3 Current unbalance between neutrals (Figure 5) 13 6.2.4 Phase voltage unbalance (Figure 6) . 13 6.2.5 Voltage difference (Figure 7) 13 6.2.6 Current unbalance in bridge connection (Figure 8) . 13 6.3 C

11、urrent and voltage transformers 13 6.3.1 Current transformers 13 6.3.2 Voltage transformers 14 6.4 Relays and protection settings 14 6.5 Sensitivity . 14 6.6 Initial unbalance 15 PD IEC/TS 60871-3:2015IEC TS 60871-3:2015 IEC 2015 3 7 Overload current . 15 7.1 Operation 15 7.2 Protective arrangement

12、 15 7.3 Current transformers . 15 7.4 Relays 15 7.5 Protective settings 16 8 Over and undervoltage 16 8.1 Operation 16 8.2 Overvoltage protection 16 8.3 Undervoltage protection 16 8.4 Reclosing 16 9 Other protection 17 9.1 Surge arresters . 17 9.1.1 General . 17 9.1.2 Operation 17 9.1.3 Lightning t

13、ransients 17 9.1.4 Switching transients . 17 9.1.5 Temporary overvoltages . 17 9.1.6 Rated voltage 17 9.1.7 Energy absorption 18 9.2 Damping devices 18 9.2.1 Capacitor switching 18 9.2.2 Inrush currents 18 9.2.3 Voltage transients 19 9.2.4 Ratings 19 9.3 Synchronized switching . 19 9.3.1 Operation 1

14、9 9.3.2 Breaker contacts delay. 19 10 Safety . 19 10.1 Discharging devices 19 10.1.1 General . 19 10.1.2 Internal resistors 20 10.1.3 External discharge devices 20 10.1.4 Discharging after disconnection . 20 10.2 Dead metallic parts . 20 Bibliography . 25 Figure 1 Fuse types . 10 Figure 2 Typical ca

15、se rupture curves for approximately 30 000 cm case volume . 21 Figure 3 Star connection with the neutral grounded through a current transformer . 21 Figure 4 Star connection with voltage transformer between neutral and ground 21 Figure 5 Star connection with ungrounded neutral and voltage transforme

16、rs connected in an open delta 22 Figure 6 Double-star connection with ungrounded neutral . 22 Figure 7 Star connection with grounded neutral and voltage transformers connected in differential measurement . 22 Figure 8 Bridge connection 22 PD IEC/TS 60871-3:2015 4 IEC TS 60871-3:2015 IEC 2015 Figure

17、9 Line overcurrent relays for capacitor bank, grounded 22 Figure 10 Line overcurrent relays for capacitor bank, ungrounded 23 Table 1 Melting currents for type-K (fast) fuse links, in amperes . 23 Table 2 Melting currents for type-T (slow) fuse links, in amperes 24 PD IEC/TS 60871-3:2015IEC TS 60871

18、3:2015 IEC 2015 5 INTERNATIONAL ELECTROTECHNICAL COMMISSION _ SHUNT CAPACITORS FOR AC POWER SYSTEMS HAVING A RATED VOLTAGE ABOVE 1 000 V Part 3: Protection of shunt capacitors and shunt capacitor banks FOREWORD 1) The International Electrotechnical Commission (IEC) is a worldwide organization for s

19、tandardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes

20、 International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may parti

21、cipate in this preparatory work. International, governmental and non- governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement be

22、tween the two organizations. 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. 3) IEC Publicat

23、ions have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for

24、any misinterpretation by any end user. 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the correspondi

25、ng national or regional publication shall be clearly indicated in the latter. 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any se

26、rvices carried out by independent certification bodies. 6) All users should ensure that they have the latest edition of this publication. 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC N

27、ational Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. 8) Attentio

28、n is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC s

29、hall not be held responsible for identifying any or all such patent rights. The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when the required support cannot b

30、e obtained for the publication of an International Standard, despite repeated efforts, or the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard. International Standard IEC 60871-3

31、 which is a technical specification, has been prepared by IEC technical committee 33: Power capacitors and their applications. This second edition cancels and replaces the first edition published in 1996. This edition constitutes a technical revision. PD IEC/TS 60871-3:2015 6 IEC TS 60871-3:2015 IE

32、C 2015 This edition includes the following significant technical changes with respect to the previous edition: a) Clearer writing of formulas on energy limitation for expulsion fuses; b) Updated normative references and bibliography; c) A new clause for synchronized switching has been added. The tex

33、t of this technical specification is based on the following documents: Enquiry draft Report on voting 33/545/DTS 33/563/RVC Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table. This publication has been dra

34、fted in accordance with the ISO/IEC Directives, Part 2. A list of all parts in the IEC 60871, published under the general title Shunt capacitors for a.c. power systems having a rated voltage above 1 000 V, can be found on the IEC website. The committee has decided that the contents of this publicati

35、on will remain unchanged until the stability date indicated on the IEC website under “http:/webstore.iec.ch“ in the data related to the specific publication. At this date, the publication will be transformed into an International standard, reconfirmed, withdrawn, replaced by a revised edition, or am

36、ended. A bilingual version of this publication may be issued at a later date. PD IEC/TS 60871-3:2015IEC TS 60871-3:2015 IEC 2015 7 SHUNT CAPACITORS FOR AC POWER SYSTEMS HAVING A RATED VOLTAGE ABOVE 1 000 V Part 3: Protection of shunt capacitors and shunt capacitor banks 1 Scope This part of IEC 6087

37、1, which is a technical specification, gives guidance on the protection of shunt capacitors and shunt capacitor banks. it applies to capacitors according to IEC 60871- 1. 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispen

38、sable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 60549, High-voltage fuses for the external protection of shunt capacitors IEC 60871-1, Shunt capacitors for a

39、c. power systems having a rated voltage above 1 000 V Part 1: General IEC 60871-4, Shunt capacitors for AC power systems having a rated voltage above 1 000 V Part 4: Internal fuses 3 Terms and definitions For the purposes of this document, the terms and definitions given in IEC 60549, IEC 60871- 1

40、and IEC 60871-4 apply. 4 Internal fuses 4.1 General Internal fuses for shunt capacitors are selective current-limiting fuses arranged inside a capacitor. As defined in IEC 60871-4, they are designed to isolate faulted capacitor elements or capacitor unit, to allow operation of the remaining parts of

41、 that capacitor unit and the bank in which the capacitor unit is connected. The operation of an internal fuse is initiated by the breakdown of a capacitor element. The affected element is instantaneously disconnected by the operation of the element fuse without interruption in the operation of the c

42、apacitor. The number of externally parallel connected capacitors and the available short-circuit current of the supply system should not affect the current-limiting of internal fuses. It should be noted that internal fuses do not provide protection against a short circuit between internal connection

43、s or a short circuit between active parts and casing, both of which may lead to case rupture. PD IEC/TS 60871-3:2015 8 IEC TS 60871-3:2015 IEC 2015 4.2 Fuse characteristics 4.2.1 Rated current There is no definition or test method existing for element fuses. Element fuses are, in general, designed f

44、or much higher currents than the maximum permissible element current. They are meant to disconnect only faulty elements. The faulty elements and their fuses are not intended to be replaced. 4.2.2 Rated discharge capability IEC 60871-4 and IEC 60871-1 specify that the capacitor be subject to five und

45、amped discharges from a d.c. charge level of 2,5 U N . For special applications, where inrush currents and/or peak voltages are limited, lower discharge requirements are applicable. 4.2.3 Disconnecting capability Requirements and test procedures are given in IEC 60871-4. These tests verify that the

46、fuse has a current-limiting action. 4.2.4 Voltage withstand capability after operation Requirements and test procedures are given in IEC 60871-4. 4.3 Influence of capacitor element configuration on capacitor life 4.3.1 Capacitor with all elements connected in parallel After the breakdown of an eleme

47、nt, the respective fuse will melt in less than a millisecond owing to the discharge current from the parallel connected elements and capacitors and the power frequency current from the supply. The capacitor may, however, continue operating with a correspondingly reduced output. If the capacitor is o

48、perated at a fixed bus voltage, no variation in operating voltage on the remaining healthy elements will occur. 4.3.2 Capacitor with elements connected in series and parallel After the breakdown of an element, all parallel connected elements discharge their stored energy or part of it into the fault

49、y element. The power frequency current is limited by the remaining healthy elements connected in series. After the disconnection of the faulty element, the capacitor continues operating with a correspondingly reduced output. The remaining healthy elements of the group are then stressed with a voltage approximately m n /m (n 1) + 1 times the initial voltage, where n is the number of parallel connected elements per group and m the number of series- connected sections per unit. I

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1