1、BSI Standards Publication Nanomanufacturing Key control characteristics Part 4-3: Nano-enabled electrical energy storage Contact and coating resistivity measurements for nanomaterials PD IEC/TS 62607-4-3:2015National foreword This Published Document is the UK implementation of IEC/TS 62607-4- 3:2015
2、. The UK participation in its preparation was entrusted to Technical Committee NTI/1, Nanotechnologies. A list of organizations represented on this committee can be obtained on request to its secretary. This publication does not purport to include all the necessary provisions of a contract. Users ar
3、e responsible for its correct application. The British Standards Institution 2015. Published by BSI Standards Limited 2015 ISBN 978 0 580 86146 8 ICS 07.030 Compliance with a British Standard cannot confer immunity from legal obligations. This Published Document was published under the authority of
4、the Standards Policy and Strategy Committee on 30 September 2015. Amendments/corrigenda issued since publication Date Text affected PUBLISHED DOCUMENT PD IEC/TS 62607-4-3:2015 IEC TS 62607-4-3 Edition 1.0 2015-08 TECHNICAL SPECIFICATION Nanomanufacturing Key control characteristics Part 4-3: Nano-en
5、abled electrical energy storage Contact and coating resistivity measurements for nanomaterials INTERNATIONAL ELECTROTECHNICAL COMMISSION ICS 07.030 ISBN 978-2-8322-2851-7 Registered trademark of the International Electrotechnical Commission Warning! Make sure that you obtained this publication from
6、an authorized distributor. colour inside PD IEC/TS 62607-4-3:2015 2 IEC TS 62607-4-3:2015 IEC 2015 CONTENTS FOREWORD . 4 INTRODUCTION . 6 1 Scope 7 2 Normative references. 7 3 Terms, definitions, acronyms and abbreviations . 7 3.1 Terms and definitions 7 3.2 Acronyms and abbreviations 8 4 Sample pre
7、paration methods . 8 4.1 General . 8 4.2 Reagents 9 4.2.1 Casting slurry. 9 4.2.2 Isolator substrates . 9 4.2.3 Metal collector strips and sample layout . 9 4.3 Preparation of the electrode nanomaterial test samples . 9 5 Measurement of electric properties 10 5.1 General . 10 5.2 Coating resistivity
8、 10 5.2.1 Demarcation of method 10 5.2.2 Measurement of the sample thickness 10 5.2.3 Experimental procedures and measurement conditions . 10 5.3 Contact resistivity 11 5.3.1 Demarcation of method 11 5.3.2 Experimental procedures and measurement conditions . 11 6 Data analysis / interpretation of re
9、sults 11 6.1 Coating resistivity 11 6.2 Contact resistivity 12 Annex A (informative) Case study 13 A.1 Sample preparation . 13 A.2 Results for a supercap EDLC-electrode and a lithium-ion battery NCM- cathode . 15 A.2.1 Linear correlation between current and voltage of the electrode coating resistanc
10、e of a supercap electrode (ohmic behaviour) . 15 A.2.2 Results for coating resistivity 16 A.2.3 Results of measurement of contact resistivity . 17 Bibliography . 18 Figure 1 Layout of the coating (left) and contact (right) resistivity measurement . 9 Figure A.1 Sample preparation . 13 Figure A.2 Con
11、struction steps 15 Figure A.3 Correlation between current and voltage of the coating resistance of various supercap EDLC-electrodes (variation in amount of carbon black additive in the electrode recipe) . 15 Figure A.4 Coating resistivity of supercap electrodes with variation in the amount of carbon
12、 black in the electrode composite recipe and sample thickness. . 16 Figure A.5 Coating resistivity of NCM-based lithium-ion battery cathode with variation in the amount of NCM, binder to carbon black value and sample thickness . 16 PD IEC/TS 62607-4-3:2015IEC TS 62607-4-3:2015 IEC 2015 3 Figure A.6
13、Contact resistivity of a supercap electrode in the state “as cast” and “densified” 17 Figure A.7 Contact resistivity of a NCM-based lithium-ion battery cathode (81,3 vol.-% NCM) in the state “as cast” and “as densified” 17 PD IEC/TS 62607-4-3:2015 4 IEC TS 62607-4-3:2015 IEC 2015 INTERNATIONAL ELECT
14、ROTECHNICAL COMMISSION _ NANOMANUFACTURING KEY CONTROL CHARACTERISTICS Part 4-3: Nano-enabled electrical energy storage Contact and coating resistivity measurements for nanomaterials FOREWORD 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization compr
15、ising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Stand
16、ards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this prepa
17、ratory work. International, governmental and non- governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organi
18、zations. 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. 3) IEC Publications have the form o
19、f recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretatio
20、n by any end user. 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regio
21、nal publication shall be clearly indicated in the latter. 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out b
22、y independent certification bodies. 6) All users should ensure that they have the latest edition of this publication. 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees f
23、or any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. 8) Attention is drawn to the No
24、rmative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held res
25、ponsible for identifying any or all such patent rights. The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a Technical Specification when the required support cannot be obtained for the p
26、ublication of an International Standard, despite repeated efforts, or the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard. Technical Specifications are subject to review within
27、three years of publication to decide whether they can be transformed into International Standards. IEC 62607-4-3, which is a Technical Specification, has been prepared by IEC technical committee 113: Nanotechnology standardization for electrical and electronic products and systems. PD IEC/TS 62607-4
28、-3:2015IEC TS 62607-4-3:2015 IEC 2015 5 The text of this Technical Specification is based on the following documents: Enquiry draft Report on voting 113/239/DTS 113/263A/RVC Full information on the voting for the approval of this Technical Specification can be found in the report on voting indicated
29、 in the above table. This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. A list of all parts in the IEC 62607 series, published under the general title Nanomanufacturing Key control characteristics, can be found on the IEC website. The committee has decided that the
30、contents of this publication will remain unchanged until the stability date indicated on the IEC website under “http:/webstore.iec.ch“ in the data related to the specific publication. At this date, the publication will be transformed into an International Standard, reconfirmed, withdrawn, replaced b
31、y a revised edition, or amended. A bilingual version of this publication may be issued at a later date. IMPORTANT The colour inside logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users sho
32、uld therefore print this document using a colour printer. PD IEC/TS 62607-4-3:2015 6 IEC TS 62607-4-3:2015 IEC 2015 INTRODUCTION The future utilization of renewable energy technologies including e-mobility for individual transportation significantly depends on the development of efficient systems fo
33、r energy storage. From todays perspective, lithium-ion batteries, supercapacitors and their derivative concepts are regarded as the most promising innovative candidates. A high energy density for the desired power and a long life time (recharge characteristics) are the two most important criteria fo
34、r electrode materials. Because many electrochemically active materials such as metal oxides show an inherently lower and insufficient conductivity for the electron transport, composite materials with carbon nanomaterial content are used for optimization of the current flow in the electrodes of a bat
35、tery. The electrochemical reactions and the ensuing energy density of the battery cells are influenced by the movement of electrons in a composite. Furthermore, the electronic contact resistivity between the electrode material and the metal collector is important to realize a low ohmic internal resi
36、stance of the battery or capacitor device. This part of IEC 62607 provides standard methods to measure coating and contact resistivity of nano-enabled electrode materials and to evaluate the best combinations of the composite material recipes and fabrication technologies for carbon containing coatin
37、gs of such nano- enabled electrodes. Following this method will allow comparison of the results of different research groups. This standardized method is intended for comparing the contact and coating resistivity of composite materials with carbon nanomaterial content in the study stage, not for eva
38、luating the electrode in end products. The method is applicable for nano-enabled materials exhibiting function or performance only possible with nanotechnology, intentionally added to composite materials for measurable and significant improvement of the current flow in the electrodes of electrical e
39、nergy storage devices. In this context it is important to note that the percentage content of nanomaterial of the device in question has no direct relation to the applicability of this part of IEC 62607, because minute quantities of nanomaterial are frequently sufficient to improve the performance s
40、ignificantly. The fraction of nanomaterials in electrodes, electrode coatings, separators or electrolyte is not of relevance for using this method. PD IEC/TS 62607-4-3:2015IEC TS 62607-4-3:2015 IEC 2015 7 NANOMANUFACTURING KEY CONTROL CHARACTERISTICS Part 4-3: Nano-enabled electrical energy storage
41、Contact and coating resistivity measurements for nanomaterials 1 Scope This part of IEC 62607 provides a standardized test method for the measurement of contact and coating resistivity of nano-enabled electrode materials. This method will enable a customer to: a) decide whether or not a coating comp
42、osite material is usable, and b) select best combinations of coating composite material with fabrication technologies suitable for their application. This part of IEC 62607 includes: definitions of terminology used in this part of IEC 62607, recommendations for sample preparation, outlines of the ex
43、perimental procedures used to measure and calculate the contact and coating resistivity, methods of interpretation of results and discussion of data analysis, and a case study. 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are in
44、dispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO/TS 80004-1, Nanotechnologies Vocabulary Part 1: Core terms 3 Terms, definitions, acronyms and abbreviat
45、ions 3.1 Terms and definitions For the purposes of this document, the terms and definitions given in ISO/TS 80004-1 and the following apply. 3.1.1 electrode nanomaterial material used in nano-enabled energy storage devices such as lithium-ion batteries or super- capacitors which contains a fraction
46、of nanomaterial and exhibits function or performance made possible only with the application of nanotechnology Note 1 to entry: Electrodes used in lithium-ion batteries or supercapacitors consist of mixed raw material powders (e.g. electrochemical active and carbon based nanomaterial powders) in a s
47、olvent with binder which forms a casting slurry. These slurries are coated by doctor blade process on thin metal collector foils, dried and subsequently calendar compressed to the final electrode. The electrode shows a multilayered layout, built up of (1) an aluminium or copper current collector and
48、 (2) the electrode material layer. This material layer consists of the active phase (cathode lithium containing mixed oxides or phosphate, e.g. LCO, NCA, NCM, and LFP; anode, e.g. graphite and supercap activated carbon), a conducting phase (e.g. carbon nanomaterials like CB, carbon nanotubes or fibr
49、es) and an organic binder (e.g. PVDF or SBR). PD IEC/TS 62607-4-3:2015 8 IEC TS 62607-4-3:2015 IEC 2015 3.1.2 coating resistivity resistance to the passage of an electric current through the electrode material layer Note 1 to entry: It is expressed as electrical resistivity. Note 2 to entry: The electric resistivity of the electrode material layer depends on several factors such as raw materials, the slurry processing step and the final electrode fabrica
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1