ImageVerifierCode 换一换
格式:PDF , 页数:24 ,大小:346.93KB ,
资源ID:400005      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-400005.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(API RP 13M-4-2006 Recommended Practice for Measuring Stimulation and Gravel-pack Fluid Leakoff Under Static Conditions (FIRST EDITION)《测量静态条件下增产液和砾石充填液的可靠方法.第1版.ISO 13503-4通过》.pdf)为本站会员(sofeeling205)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

API RP 13M-4-2006 Recommended Practice for Measuring Stimulation and Gravel-pack Fluid Leakoff Under Static Conditions (FIRST EDITION)《测量静态条件下增产液和砾石充填液的可靠方法.第1版.ISO 13503-4通过》.pdf

1、Recommended Practice for Measuring Stimulation and Gravel-pack Fluid Leakoff Under Static ConditionsANSI/API RECOMMENDED PRACTICE 13M-4FIRST EDITION, DECEMBER 2006REAFFIRMED, JULY 2015ISO 13503-4 (Identical), Petroleum and natural gas industriesCompletion of fluids and materialsPart 4: Procedure for

2、 measuring stimulation and gravel-pack fluid leakoff under static conditionsSpecial Notes API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed. Neither API nor any of APIs employ

3、ees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or responsibility for any use, or the results of suc

4、h use, of any information or process disclosed in this publication. Neither API nor any of APIs employees, subcontractors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights. API publications may be used by anyone desiring to do so.

5、Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or dama

6、ge resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict. API publications are published to facilitate the broad availability of proven, sound engineering and operating practices. These publications are not intended to obviate the

7、 need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from using any other practices. Any manufacturer marking equipment or materials in conformanc

8、e with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard. All rights reserved. No part of this work

9、may be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. Contact the Publisher, API Publishing Services, 1220 L Street, N.W., Washington, D.C. 20005. Copyright 200

10、6 American Petroleum Institute API Foreword Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publi

11、cation be construed as insuring anyone against liability for infringement of letters patent. This document was produced under API standardization procedures that ensure appropriate notification and participation in the developmental process and is designated as an API standard. Questions concerning

12、the interpretation of the content of this publication or comments and questions concerning the procedures under which this publication was developed should be directed in writing to the Director of Standards, American Petroleum Institute, 1220 L Street, N.W., Washington, D.C. 20005. Requests for per

13、mission to reproduce or translate all or any part of the material published herein should also be addressed to the director. Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. A one-time extension of up to two years may be added to this review cycl

14、e. Status of the publication can be ascertained from the API Standards Department, telephone (202) 682-8000. A catalog of API publications and materials is published annually and updated quarterly by API, 1220 L Street, N.W., Washington, D.C. 20005. Suggested revisions are invited and should be subm

15、itted to the Standards and Publications Department, API, 1220 L Street, NW, Washington, DC 20005, standardsapi.org. This standard shall become effective on the date printed on the cover but may be used voluntarily from the date of distribution. Standards referenced herein may be replaced by other in

16、ternational or national standards that can be shown to meet or exceed the requirements of the referenced standard. This American National Standard is under the jurisdiction of the API Subcommittee 13 on Drilling, Completion, and Fracturing Fluids. This standard is considered identical to the English

17、 version of ISO 13503-4. ISO 13503-4 was prepared by Technical Committee ISO/TC 67, Materials, equipment and offshore structures for petroleum and natural gas industries, SC 3, Drilling and completion fluids, and well cement. API 13M-4 / ISO 13503-4ii Contents Page API Foreword ii Foreword iv Introd

18、uction . v 1 Scope 1 2 Terms and definitions . 1 3 Measurement and precision . 2 4 Fluid preparation . 2 5 Instrument calibration 3 6 Measurement procedure . 3 7 Operational procedure 7 8 Calculations . 8 9 Report . 13 10 Procedure modifications 14 ISO 13503-4:2006(E) iv ISO 2006 All rights reserved

19、Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a t

20、echnical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters

21、 of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulate

22、d to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible

23、for identifying any or all such patent rights. ISO 13503-4 was prepared by Technical Committee ISO/TC 67, Materials, equipment and offshore structures for petroleum, petrochemical and natural gas industries, Subcommittee SC 3, Drilling and completion fluids, and well cements. ISO 13503 consists of t

24、he following parts, under the general title Petroleum and natural gas industries Completion fluids and materials: Part 1: Measurement of viscous properties of completion fluids Part 2: Measurement of properties of proppants used in hydraulic fracturing and gravel-packing operations Part 3: Testing o

25、f heavy brines Part 4: Procedure for measuring stimulation and gravel-pack fluid leakoff under static conditions Part 5: Procedures for measuring the long-term conductivity of proppants API 13M-4 / ISO 13503-4iv ISO 13503-4:2006(E) ISO 2006 All rights reserved vIntroduction The objective of this par

26、t of ISO 13503 is to provide a standard procedure for measuring fluid loss under static conditions. This standard procedure was compiled on the basis of several years of comparative testing, debate, discussion and continued research by the industry 1). In this part of ISO 13503, where practical, US

27、Customary (USC) units are included in parentheses for information. 1) PENNY, G.S. and CONWAY, M.W. Fluid Leakoff, Recent Advances in Hydraulic Fracturing, J.L. Gidley, S.A. Holditch. D.E. Nierode and R.W. Veatch Jr. (eds), SPE Monograph 1989. API 13M-4 / ISO 13503-4v INTERNATIONAL STANDARD ISO 13503

28、-4:2006(E) ISO 2006 All rights reserved 1Petroleum and natural gas industries Completion fluids and materials Part 4: Procedure for measuring stimulation and gravel-pack fluid leakoff under static conditions 1 Scope This part of ISO 13503 provides for consistent methodology to measure fluid loss of

29、stimulation and gravel-pack fluid under static conditions. However, the procedure in this part of ISO 13503 excludes fluids that react with porous media. 2 Terms and definitions For the purposes of this document, the following terms and definitions apply. 2.1 base fluid solution media used to prepar

30、e completion fluid 2.2 filtrate fluid that permeates into the porous medium 2.3 filter cake build-up of materials on the face or within the matrix of porous medium due to fluid leakoff 2.4 fluid loss fluid loss is a measure of fluid volume that leaks into a porous medium over time 2.5 gravel-pack fl

31、uids fluids used to place filtration media to control formation sand production from oil and gas wells 2.6 leakoff entry of fluid into a porous media 2.7 pH negative of the logarithm (base 10) of the hydrogen ion concentration 2.8 spurt time time between the initial entry of fluid into porous medium

32、 and the onset of square-root-of-time leakoff behaviour API 13M-4 / ISO 13503-41 ISO 13503-4:2006(E) 2 ISO 2006 All rights reserved2.9 shut-in time time from loading the cell to the initiation of leakoff test 2.10 spurt loss theoretical loss of fluid/filtrate at first exposure of that fluid into a p

33、orous medium 2.11 stimulation fluids fluids used to enhance production from oil and gas wells by fracturing or acidizing 2.12 viscosity-controlled fluid-loss coefficient measure of the leakoff rate controlled by the viscosity of filtrate 2.13 viscosity of fluid measure of the internal friction of a

34、fluid whenever it is caused to move by an external force 2.14 wall-building coefficient measure of the leakoff rate due to filter cake formation 3 Measurement and precision Temperature shall be measured to a precision of 1 C ( 2 F). All other quantitative measurements shall be made to a precision of

35、 2 %, unless specified otherwise. 4 Fluid preparation Certain aspects of sample preparation and handling can affect properties of a fluid. During all procedures, steps shall be taken to minimize air entrainment into the fluid. The procedure used to prepare the fluid sample shall be documented as fol

36、lows: a) description and/or composition of the base fluid; b) base fluid pre-treatment such as filtration; c) preparation of the fluid, which shall be described, starting with the base fluid, such as deionized water, tap water source, seawater (location) or type of organic fluids; d) identification

37、of mixing apparatus, container volume and total volume of fluid prepared; e) time of mixing should include mixing time(s) at one or more mixer speed(s); f) identification of each component and amount added; g) order and method of addition of each component; h) aging or holding time at temperature, i

38、f required, prior to tests; i) test temperature; j) pH (for aqueous fluids, where applicable); k) all other aspects of the fluid preparation that are known to affect the outcome of measurement. API 13M-4 / ISO 13503-42 ISO 13503-4:2006(E) ISO 2006 All rights reserved 35 Instrument calibration The in

39、struments associated with these procedures shall be calibrated according to each manufacturers recommended method. 6 Measurement procedure 6.1 Introduction 6.1.1 General considerations Fluid-loss tests are conducted to simulate leakoff into a formation. Fluid-loss tests measure the rate of leakoff i

40、nto a porous medium to calculate fluid-loss coefficients to guide engineering design of well completion operations. This part of ISO 13503 provides guidelines on known limitations to the testing procedure. Where data are reported as being obtained using this procedure, the procedure shall be followe

41、d exactly. The fluid shall not react with instrument surfaces to generate contaminants, change critical measurement dimensions or impair proper mechanical operation. 6.1.2 Apparatus Figures 1 and 2 present drawings of two types of typical static fluid-loss apparatus 2)with 175 ml and 500 ml capaciti

42、es, respectively. 2) Examples of suitable fluid-loss cells are Baroid HPHT Filter Press Part Number 38700 and Chandler Engineering Model 4214. This information is given for the convenience of users of this part of ISO 13503 and does not constitute an endorsement by ISO of these products. API 13M-4 /

43、 ISO 13503-43 ISO 13503-4:2006(E) 4 ISO 2006 All rights reservedKey 1 O-ring seal 2 stem/valve 3 top cap 4 O-ring seal 5 backup ring 6 cell body 7 set screw 8 filter-paper assembly or synthetic core 9 bottom cap 10 seal mechanism 11 natural core aAssembly fluid-loss cell, 175 ml, 12 400 kPa (1 800 p

44、si), 303 SS. bNatural core. cSynthetic core or filter-paper assembly. Figure 1 Typical 175 ml fluid-loss cell API 13M-4 / ISO 13503-44 ISO 13503-4:2006(E) ISO 2006 All rights reserved 5Key 1 O-ring seal 2 stem/valve 3 bottom cap 4 O-ring seal 5 cell body 6 set screw 7 filter-paper assembly or synthe

45、tic core 8 seal mechanism 9 natural core aAssembly fluid-loss cell, 500 ml, 12 400 kPa (1 800 psi), 303 SS. bNatural core. cSynthetic core or filter-paper assembly. Figure 2 Typical 500 ml fluid-loss cell The type of fluid-loss cell is not specified. However, the fluid-loss cell should permit use of

46、 filter paper, natural- or synthetic-core samples as the filter medium. It shall be further equipped with a back-pressure receiver to be used when the test temperature exceeds the boiling point of the filtrate. Both the fluid-loss cell and back-pressure receiver shall have operating limits of at lea

47、st 10 342 kPa (1 500 psi) and 121 C (250 F). The test core or filter medium shall be mounted within the cell in such a way that fluid cannot bypass the core or filter medium. A schematic diagram of fluid-loss apparatus is shown in Figure 3. API 13M-4 / ISO 13503-45 ISO 13503-4:2006(E) 6 ISO 2006 All rights reservedKey 1 pressurizing valve 2 fluid-loss cell 3 heating source 4 sample fluid 5 porous medium 6 filtrate valve 7 back-pressure receiver, optional 8 filtrate collector Figure 3 Static

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1