1、Reported by ACI Committee 355ACI 355.3R-11Guide for Design of Anchorageto Concrete: Examples UsingACI 318 Appendix DGuide for Design of Anchorage to Concrete:Examples Using ACI 318 Appendix DFirst printingMay 2011ISBN 978-0-87031-425-4American Concrete InstituteAdvancing concrete knowledgeCopyright
2、by the American Concrete Institute, Farmington Hills, MI. All rights reserved. This materialmay not be reproduced or copied, in whole or part, in any printed, mechanical, electronic, film, or otherdistribution and storage media, without the written consent of ACI.The technical committees responsible
3、 for ACI committee reports and standards strive to avoid ambiguities,omissions, and errors in these documents. In spite of these efforts, the users of ACI documents occasionallyfind information or requirements that may be subject to more than one interpretation or may beincomplete or incorrect. User
4、s who have suggestions for the improvement of ACI documents arerequested to contact ACI via the errata website at www.concrete.org/committees/errata.asp. Properuse of this document includes periodically checking for errata for the most up-to-date revisions.ACI committee documents are intended for th
5、e use of individuals who are competent to evaluate thesignificance and limitations of its content and recommendations and who will accept responsibility for theapplication of the material it contains. Individuals who use this publication in any way assume all risk andaccept total responsibility for
6、the application and use of this information.All information in this publication is provided “as is” without warranty of any kind, either express or implied,including but not limited to, the implied warranties of merchantability, fitness for a particular purpose ornon-infringement.ACI and its members
7、 disclaim liability for damages of any kind, including any special, indirect, incidental,or consequential damages, including without limitation, lost revenues or lost profits, which may resultfrom the use of this publication.It is the responsibility of the user of this document to establish health a
8、nd safety practices appropriate tothe specific circumstances involved with its use. ACI does not make any representations with regard tohealth and safety issues and the use of this document. The user must determine the applicability of allregulatory limitations before applying the document and must
9、comply with all applicable laws and regula-tions, including but not limited to, United States Occupational Safety and Health Administration (OSHA)health and safety standards.Order information: ACI documents are available in print, by download, on CD-ROM, through electronicsubscription, or reprint an
10、d may be obtained by contacting ACI.Most ACI standards and committee reports are gathered together in the annually revised ACI Manual ofConcrete Practice (MCP).American Concrete Institute38800 Country Club DriveFarmington Hills, MI 48331U.S.A.Phone: 248-848-3700Fax: 248-848-3701www.concrete.orgACI 3
11、55.3R-11 was adopted and published March 2011.Copyright 2011, American Concrete Institute.All rights reserved including rights of reproduction and use in any form or by anymeans, including the making of copies by any photo process, or by electronic ormechanical device, printed, written, or oral, or
12、recording for sound or visual reproduc-tion or for use in any knowledge or retrieval system or device, unless permission inwriting is obtained from the copyright proprietors.1ACI Committee Reports, Guides, Manuals, and Commentariesare intended for guidance in planning, designing, executing,and inspe
13、cting construction. This document is intended for theuse of individuals who are competent to evaluate thesignificance and limitations of its content and recommendationsand who will accept responsibility for the application of thematerial it contains. The American Concrete Institute disclaimsany and
14、all responsibility for the stated principles. The Instituteshall not be liable for any loss or damage arising therefrom.Reference to this document shall not be made in contractdocuments. If items found in this document are desired by theArchitect/Engineer to be a part of the contract documents, they
15、shall be restated in mandatory language for incorporation bythe Architect/Engineer.Guide for Design of Anchorage to Concrete:Examples Using ACI 318 Appendix DReported by ACI Committee 355ACI 355.3R-11This guide presents worked examples using the design provisions in ACI318 Appendix D. Not all condit
16、ions are covered in these examples. Theessentials of direct tension, direct shear, combined tension and shear, andthe common situation of eccentric shear, as in a bracket or corbel, arepresented.Keywords: anchorage; combined tension and shear; design examples;eccentric shear; embedded bolts; headed-
17、stud anchors; post-installedanchors; shear; tension.CONTENTSChapter 1Introduction, p. 21.1Introduction1.2Discussion on design example problems1.3Commentary on seismic requirements for Appendix Dof ACI 318-02 and ACI 318-051.4Commentary on seismic requirements for Appendix Dof ACI 318-081.5Commentary
18、 on notation and definitions forAppendix D ACI 318-081.6Anchor designs featured in example problemsChapter 2Notation and definitions, p. 42.1Notation2.2DefinitionsChapter 3ACI 318-05 Appendix D (reprinted),p. 7Chapter 4Design examples, p. 354.1Example 1: Single headed anchor away from edgessubjected
19、 to seismic tension4.2Example 2: Single hooked anchor away from edgessubjected to seismic tension4.3Example 3: Single post-installed anchor in tensionaway from edges4.4Example 4: Group of headed studs in tension nearan edge4.5Example 5: Single headed bolt in shear near an edge4.6Example 6: Single he
20、aded bolt in tension and shearnear an edge4.7Example 7: Single post-installed anchor in tensionand shear near an edgeTarek S. Aziz Werner A. F. Fuchs Richard E. Klingner*Jake OlsenRanjit L. Bandyopadhyay*Branko Galunic Anthony J. Lamanna Alan D. PricePeter J. Carrato*Brian C. Gerber Harry B. Lancelo
21、t III John F. Silva*Harry A. Chambers Michael Gong Nam-Ho Lee*Patrick J. E. SullivanRonald A. Cook*Herman L. Graves III Lee W. Mattis Harry WiewelRolf Eligehausen Christopher Heinz*Robert R. McGlohn*Richard E. WollmershauserSam S. Eskildsen*Bruce I. Ireland*Committee 355 members who were major contr
22、ibutors to the development of this guide.Deceased.Donald F. Meinheit*ChairJ. Bret Turley*Secretary2 GUIDE FOR DESIGN OF ANCHORAGE TO CONCRETE: EXAMPLES USING ACI 318 APPENDIX D (ACI 355.3R-11)American Concrete Institute Copyrighted Materialwww.concrete.org4.8Example 8: Group of cast-in anchors in te
23、nsion and shearwith two free edges and supplemental reinforcement4.9Example 9: Group of headed studs in tension near anedge with eccentricity4.10Example 10: Multiple headed anchor connectionsubjected to moment and shear4.11Example 11: Multiple post-installed anchorconnection subjected to seismic mom
24、ent and shear4.12Example 12: Multiple headed anchor connectionsubjected to seismic moment and shear4.13Example 13: Group of tension anchors on a pierwith shear lugChapter 5References, p. 1185.1Referenced standards and reports5.2Cited referencesAppendix ATables, p. 119Table A.1Materials for headed an
25、chors and threaded rodsTable A.2(a)Bearing area (Abrg) for cast-in anchors,threaded rod with nuts, and threaded rodswith nuts and washersTable A.2(b)Dimensional properties of bolts and studsfor determining bearing area (Abrg)Table A.2(c)Dimensional properties of nuts fordetermining bearing area (Abr
26、g)Table A.3Sample data for a post-installed, torque-controlled mechanical expansion anchorTable A.4Sample data for a post-installed, undercut anchorCHAPTER 1INTRODUCTION1.1IntroductionThis guide was prepared by the members of ACI 355,Anchorage to Concrete, to provide design examples thatdemonstrate
27、the provisions of ACI 318-05 Appendix D.Appendix D, which was first introduced in ACI 318-02,contains design provisions for determining the strength ofanchors based on the Concrete Capacity Design (CCD)method for concrete breakout failure. The CCD method hasits origins in research work done at the U
28、niversity of Stuttgartin Germany (Eligehausen et al. 1987; Eligehausen and Fuchs1988; Rehm et al. 1992) and was formalized at the Univer-sity of Texas at Austin in the 1990s (Fuchs et al. 1995). TheCCD method calculates the concrete breakout strength usinga model that is based on a breakout prism ha
29、ving an angle ofapproximately 35 degrees, rather than the traditional 45-degree cone model used since the early 1970s.Appendix D design provisions are for both cast-in-placeanchors and prequalified post-installed mechanical anchors.Separate design equations are frequently provided becausecast-in-pla
30、ce anchors behave differently than post-installedanchors. The provisions for post-installed anchors are onlyintended for those post-installed anchors that are qualifiedunder comprehensive testing protocols. The testing and evalua-tion requirements in ACI 355.2 are the standard for qualifyingpost-ins
31、talled anchors used in design with Appendix D.Similar procedures, which are expected to be completedsoon, are under development for adhesive anchors andconcrete screw anchors.1.2Discussion on design example problemsThe example problems presented in this guide were developedusing the code provisions
32、in Appendix D of ACI 318-05,which were current at the time the examples were developed.The new provisions of ACI 318-08 will alter the calculationsand results in these examples. Commentary in this guidedescribes how the new ACI 318-08 provisions modify thedesign results. The ACI 318-08 Appendix D pr
33、ovisionsclarify issues when dealing with earthquake forces, ductilefailure, anchor reinforcement, and supplemental reinforcement.The design approach used in the example problems followsa basic outline of evaluating each potential failure mode intension and shear for the anchor using the provisions o
34、fAppendix D of ACI 318-05. The provisions include modifica-tion factors that account for the effects of edges, eccentricity,and the presence or lack of cracking in the concrete, todetermine the nominal strengths for each failure mode. Thetypes of failure modes considered are shown in Table 1.1.In ad
35、dition to the failure modes in Table 1.1, minimumedge distance, anchor spacing, and thickness of the concretemember are checked to preclude the splitting of concrete.The calculated nominal strengths for each failure mode aremodified by the appropriate modification factors. Theminimum calculated desi
36、gn strength becomes the controllingdesign strength of the anchor or group of anchors.1.3Commentary on seismic requirements for Appendix D of ACI 318-02 and ACI 318-05ACI 318-02 and ACI 318-05 use the terminology “low,”“moderate,” and “high” to describe the levels of seismic risk.The design strength
37、of anchors that include earthquakeforces and that are located in regions of moderate or highseismic risk are required to be controlled by failure in tension,shear, or both, of a ductile steel element. In addition, thedesign strengths for steel and concrete are reduced by a factorof 0.75. The nonduct
38、ile, concrete failure modes include all theconcrete breakout modes in tension and shear, plus the pulloutand pull-through failure modes in tension. Nonductile failurecan occur if the steel behaves in a brittle fashion. It is notalways possible, due to geometric or material constraints, todesign the
39、anchorage for a ductile failure. Therefore, codeprovisions allow the attachment, which the anchor connects tothe structure, to be considered as the ductile steel element.Design Examples 1, 2, 11, and 12 demonstrate the provisionsof Appendix D when earthquake forces are involved. Theyshow the design
40、of the anchors governed by the steel strengthof a ductile steel element, according to Section D.3.3.4 ofTable 1.1List of anchor failure modesTension failure mode Shear failure modeSteel strength of anchor Steel strength of anchor Concrete breakout strength Concrete breakout strength Concrete side-fa
41、ce blowout strength Concrete pryout strength Pullout and pull-through strengthGUIDE FOR DESIGN OF ANCHORAGE TO CONCRETE: EXAMPLES USING ACI 318 APPENDIX D (ACI 355.3R-11) 3American Concrete Institute Copyrighted Materialwww.concrete.orgACI 318-05, thus avoiding the potential problem of brittlefailur
42、e associated with concrete breakout.1.4Commentary on seismic requirements for Appendix D of ACI 318-08Several changes were made from the previous seismicrequirements for Appendix D stated in Section 1.3 of thisguide. The levels of seismic risk from previous ACI 318editions have been correlated in AC
43、I 318-08 to the corre-sponding design methods, categories, and zones shown in themodel building codes. The seismic reduction factor of 0.75that is applied to the design strength of ductile steel has beeneliminated. For Examples 1, 2, 11, and 12, which are discussedin Section 1.3 of this guide, the r
44、emoval of this reduction factorfor steel would indicate that a brittle concrete breakout failurewould control the design in most cases. Nonductile failuremodes are allowed to control seismic design in ACI 318-08 byimposing an additional reduction factor of 0.4 to the concretebreakout strength. This
45、factor, when combined with therequired seismic reduction factor of 0.75, which is associatedwith concrete failure modes, results in a total reduction of 0.3,and reduces the concrete breakout design strength from the ACI318-05 levels. The intent of reducing the permissible strength isto force the anc
46、horage system to resist the earthquake loadelastically and avoid brittle failure in the concrete.1.5Commentary on notation and definitions for Appendix D ACI 318-08A new definition, “anchor reinforcement” has beendefined in ACI 318-08 Appendix D to include the situationwhere reinforcing steel is spe
47、cifically designed to transferall the anchorage forces into the structure without consideringthe concrete breakout strength. This anchor reinforcementdesign approach occurs in cases where the concretebreakout strength is insufficient due to geometricrestraints. Example 13 provides information on des
48、igningthe anchorage using anchor reinforcement. Adding thisnew definition helped to distinguish the term from supple-mental reinforcement. Supplemental reinforcementpresent in the direction of the load can provide restraintand improve ductility for the anchorage. Although supple-mental reinforcement
49、 is not explicitly designed to transferthe load, it has been experimentally shown to improveductility, thereby allowing an increase in the designstrength of the connection through an increase in the phifactor. Examples 8 and 10 demonstrate the use of supple-mental reinforcement.A new term c,Vhas been included in ACI 318-08Appendix D to provide a modification factor to increase thebasic concrete breakout strength in shear when the thicknessof the section, ha, is less than 1.5ca1.The term for anchor diameter was changed from doto dain ACI 318-08
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1