ImageVerifierCode 换一换
格式:PDF , 页数:7 ,大小:416.32KB ,
资源ID:422042      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-422042.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(AGMA 07FTM05-2007 Vacuum Carburizing System for Powder Metal Parts and Components《粉末冶金零件和组件用真空渗碳处理系统》.pdf)为本站会员(rimleave225)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

AGMA 07FTM05-2007 Vacuum Carburizing System for Powder Metal Parts and Components《粉末冶金零件和组件用真空渗碳处理系统》.pdf

1、07FTM05Vacuum Carburizing System for Powder MetalParts and Componentsby: J. Kowalewski and K. KucharskiSECO/Warwick CorporationTECHNICAL PAPERAmerican Gear Manufacturers AssociationVacuum Carburizing System for Powder Metal Partsand ComponentsJanusz Kowalewski and Karol Kucharski, SECO/Warwick Corpo

2、rationThe statements and opinions contained herein are those of the author and should not be construed as anofficial action or opinion of the American Gear Manufacturers Association.AbstractCarburizingisoneoftheleadingsurface-hardeningprocessesappliedtothesintered,low-alloyedsteelpartsintheautomotiv

3、eindustry. Whilediffusionofcarbon inwroughtsteeliswelldocumented,thisisnotthecasefor PM steel subject to carburizing in vacuum furnaces. In this paper we present results that show that thedensityofthepowdermetalisthemainfactorforthefinalcarboncontentanddistribution. Alsoimportantisthestateofthe surf

4、aceofthepart;eithersintered withopen porosityor machinedwith closedporosity. Thewaythe carburizing gas moves through the furnace might be of some influence as well.Copyright 2007American Gear Manufacturers Association500 Montgomery Street, Suite 350Alexandria, Virginia, 22314October, 2007ISBN: 978-1

5、-55589-909-71Vacuum Carburizing System for Powder Metal Parts and ComponentsJanusz Kowalewski, Karol Kucharski, SECO/Warwick CorporationIntroductionVacuum carburizing is a non-equilibrium process1. Unlike atmospherecarburizing itis notpossibleto set the carbon potential of the atmosphere andcontrol

6、its composition in order to obtain a desiredcarburized case.Currentlytheboost-diffusiontechniqueisappliedtocontrol the surface carbon content and carbon dis-tribution in this case. In the first boost step the flowofthecarburizinggashastobesufficienttosaturatethe austenite while avoiding soot deposit

7、ion andformation of the massive carbides. To accomplishthis goal, the calculation of the proper gas flow ratehastobemade. Howeverinthecase ofP.M. parts,theamountofcarbonabsorbedbythepartssurfacecan be a few times higher thanks to additionalinter-nal surface created by pores present in the carbu-rize

8、d case 2,3. This amount will depend on thedensity of the part, the densification grade of thesurface layer and the stage ofthe surface “asma-chined”or“assintered”. Itisbelievedthatenhancedgas diffusion after initial evacuation of the P.M.parts leads to faster carburization from within thepores,espec

9、iallywhenporesareopensurface“assintered” and interconnected low density.A serious problem with vacuum carburizing isdeliv-ering the carbon in the uniform manner to the workpieces. This led to the development of the differentmethods of carburizing gas circulation i.e., pulse/pump method developed in

10、1960s or pulse/pausetechnique applied in most of todays vacuum fur-naces. 4,5. In both cases each pressure changemay deliver fresh carburizing atmosphere into thepores and leads to faster carburization from withinthe pores.Since todays control of vacuum carburizing isbasedlargelyonempiricalresults,p

11、resentedexper-iments may lead to better understanding andimproved control of the process 6, 7.Materials and experimental procedures.A standard TRS bars compacted at the pressurefrom 480 MPa to 1080 MPa, from the blend equiva-lent to 8620 steel to green densities 7.0, 7.1, 7.2,7.3,7.4and7.5g/ccmwereu

12、sedforthecarburizingtest.ThebasicironpowderwasaQMPAtomet1001HP.Alloyingelementswhereadmixedasferro-alloysorelementalpowderstogetherwithgraphiteand0.2%lubricant. Sintering was at 1280 C in the nitrogen+10% hydrogen atmosphere.As a reference coupons of 8620 steel were used.Chemical composition of the

13、samples andreference coupons is given in table 1.To get a machined surface, half of the sampleswhereground0.1mmwithtwopasses. Carboncon-tent was measured at glow with a dischargespectrometer Leco GDS400. Usually five (5) runswhere made for each depth level. Carbon profilingwas achieved by subsequent

14、 grinding and spectralanalysis.Vacuum carburizing was carry furnace with pulse/pause method and in furnace with pulse/pumpmethod of gas circulation.In both furnaces process temperature was main-tained at 900 C and the same boost and diffusiontime 16 min and 21 min respectively.Table 1. Chemical comp

15、osition of the samples.Material C Si Mn Ni Cr Mo Cu8620 P.M. 0.19 0.21 0.84 0.52 0.51 0.21 0.218620 steel 0.21 0.323 0.81 0.57 0.54 0.20 0.202In pulse/pause furnace the boost period consists of3 pulses 3 min + 1.5 min + 1.5 min separated by 5min pauses. During each pulse the pressure wasfluctuating

16、between 4.5 Torr to 8 Torr with the fre-quency1fluctuationper30sec. Thecarburizingat-mosphere was a mixture of 30% acetylene + 30%ethylene + 40% hydrogen.Boost in the pulse/pump furnace consist of threepulses separated by two pumping periods. Eachpulse last 5 min and include 8 injections, causingpre

17、ssure increase up to 100 Torr. Pumping peri-odsbetweenpulseslast1minandpressurewasre-duced till 2 Torr before beginning of the next pulse.Carburizing atmosphere consist of acetylenediluted with nitrogen in the ratio 1:7. Diffusion wascarry on under vacuum 0.2 Torr.ResultsFigures 1 and 2 show experim

18、entally obtained car-bondistributionsfordifferentdensitiesandsamplessurface “assintered” or“machined” forpulse/pausecarburizing process carry on in Seco/Warwickfurnace.Based on this results the othergraphs showingsur-facecarboncontentandcasedepthat0.5%Cinde-pendenceofthedensity canbe made,see figure

19、s3and 4.Figure 1. Carbon distribution in dependence of the density.Seco/Warwick carburizing process. Surface “as sintered”.Figure 2. Carbon distribution in dependence of the density.Seco/Warwick carburizing. Surface machined.3Figure 3. % C on the carburized surface in dependence of the density.Seco/

20、Warwick process.Figure 4. Case depth at 0.5% C in dependence of green density for machined surfaceand “as sintered”. Seco/Warwick puls-pause process.Figures 5 through 8 show similar results obtainedfor the pulse/pump carburizing process carry on inthe furnace.In both cases the highest surface carbon

21、 contentaround 2.8% C is observed in “as sintered” sam-ples, compacted to 7.0 g/ccm. This amount de-crease lineally to around 1.2 % C for samples com-pacted to 7.5 g/ccm. The same samples areshowing the higher case depth increase from 0.2mmin8620steelreferencesampleupto0.6mmforpulse/pump process and

22、 0.47 mm in pulse/pauseprocess in a vacuum furnace.Similar tendency are showing samples machined.The surface carbon content from 0.69%C - 0.7%Cin 8620 steel reference sample increase up to 1.0 1.1 %C at density 7.0 g/ccm and 0.8%C for density7.5g/ccm. Thecasedepthincreasefrom0.2mmupto 0.32mm 0.35mm.

23、4Figure 5. Carbon distribution in dependence of density.Hayes puls-pump process. Surface “as sintered”.Figure 6. Carbon distribution in dependence of density.Hayes puls-pump process. Ground surface.Figure 7. % C on the carburized surface in dependence of the green density.Hayes puls-pump process.5Fi

24、gure 8. Case depth at 0.5% C in dependence of density for machinedand “as sintered” surface. Hayes puls-pump process.ConclusionVacuum carburizing of PM materials is much fasterthan of solid steel. The most important factors areporosity and type of surface. In presented experi-ments P.M. samples with

25、 lowest density and openporosity showed the dramatic increase of thesurface carbon content up to 2.5%C and 3 timesdeeper case.Inthemicrostructureformationof massivecarbidesand increased amount of retained austenite is ob-vious. Thedifferencescausedbydifferentmethodsof gas circulation are not conclus

26、ive.References1 Kula, P., Olejnik, J., and Kowalewski, J., Fine-Carbt-the Smart System for Vacuum Carbu-rizing(IndustrialHeating,September11,2002),Meadville, PA.2 Weber,R.G.,Carburizingand CarbonitridingofPowderMetallurgyFerrousAlloys(PowderMe-tall. Int. 15 (1983) 2 94).3 Chen, Y.T. and Kiefer, Jr.,

27、 R.W., CarburizingOfP/M Materials (Carburizing Processing AndPerformance, Proceedings on an InternationalConference, p. 199, July 12-14, 1989,Lakewood, Colorado).4 St.Pierre,J.,RecentDevelopmentsInVacuumCarburizing (Carburizing Processing And Per-formance, Proceedings on an InternationalConference,J

28、uly 12-14,1989, Lakewood,Col-orado).5 Grafen, W. and Edenhofer, B., AcetyleneLow-Preassure Caburizing a Novel and SuperviorCarburizing Technology (Heat Treatment ofMetals, Vol. 26, 1999.4, pp. 79-83).6 Antes, H.W., Calculating Gas Flow Rate ForVacuum Carburization (An ASM InternationalPublication: Heat Treating Process, August2005).7 Sugiyama, M., Ishikawa, K., and Iwata, H.,Using Acetylene For Superior PerformanceVacuum Carburizing (18thASM HTS Confer-ence, November 1998).

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1