ImageVerifierCode 换一换
格式:PDF , 页数:19 ,大小:1.20MB ,
资源ID:422094      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-422094.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(AGMA 09FTM19-2009 The Effect of Gearbox Architecture on Wind Turbine Enclosure Size《齿轮箱结构对风力涡轮机外壳尺寸的影响》.pdf)为本站会员(syndromehi216)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

AGMA 09FTM19-2009 The Effect of Gearbox Architecture on Wind Turbine Enclosure Size《齿轮箱结构对风力涡轮机外壳尺寸的影响》.pdf

1、09FTM19AGMA Technical PaperThe Effect of GearboxArchitecture on WindTurbine Enclosure SizeBy C.D. Schultz, Beyta GearServiceThe Effect of Gearbox Architecture on Wind TurbineEnclosure SizeCharles D. Schultz, Beyta Gear ServiceThe statements and opinions contained herein are those of the author and s

2、hould not be construed as anofficial action or opinion of the American Gear Manufacturers Association.AbstractGearbox architecture the type of gearing used, the overall gear ratio, the number of increaser stages, thenumber of meshes, the ratio combinations, and the gear proportions- can have a profo

3、und effect on the“package”sizeofawindturbine.Inthispapertheauthorappliesacommonsetofrequirementstoavarietyofpotentialgearboxdesignsfora2.0mWwindturbineandcomparestheresulting“gearedcomponent”weights,gearbox envelope sizes, generator sizes, and generator weights. Each design option is also evaluated

4、formanufacturing difficulty via a relative cost estimate.Copyright 2009American Gear Manufacturers Association500 Montgomery Street, Suite 350Alexandria, Virginia, 22314September 2009ISBN: 978-1-55589-972-13The Effect of Gearbox Architecture on Wind Turbine Enclosure SizeCharles D. Schultz, Beyta Ge

5、ar ServiceThe importance of macro geometryMuchhasbeenwritteninrecentyearsonoptimizingthe “micro” geometry of gears, i.e., determining thebest profile or lead modifications. With this paperwe propose to take a step back and consider the“macro” geometry instead. By “macro geometry”wemeanthenumber of s

6、tages inthegear train,thetype of gears used, and the amount of gear ratioused in each stage. This basic architecture of agearbox, its “macro geometry”, is a fundamentalfactor in meeting the overall design objectives.Enhanced micro geometry can improve perfor-mance in the field but cannot make up for

7、 poordecision making on the basic design. Through thedesign exercise described in this paper we will alsoillustrate the interaction of “architecture” with theoverall sizeof thedrivepackage. Oneof theissueswe have with the recent emphasis on microgeometry is that the modifications can only beoptimize

8、d for a specific load condition. For manyapplications,suchaswindturbines,thegearboxwillbe subjected to a very wide range of conditions, formost of which it will not be “optimized.” If the basicgear train design is well thought out it will be lessdependent upon “optimization” for its success.Design c

9、onditionsThe design conditions selected represent asimplified specification for a 2.0 mW wind turbinegearbox,seeTable 1. Theydonotreflectanyactualdesign project and the results presented in thispaper are not intended to be applied to any futureproject. The typical wind turbine design specifica-tion

10、will include a much more detailed loadspectrum, for example, alongwith requirements forintensivegear ratinganalysis. The conditions usedfor this paperprovidea“level playingfield” bywhichpreliminary designs could be rapidly developed.The objective is to compare preliminary designs insuch a way as to

11、identify those which merit furtherconsideration on actual projects.Table 1. Design conditionsDesign inputs Transmitted power: 2.0 mW x 1.5application factor = 3.0 mW 4,023HPRequired life = 85,000 hours at fullloadInput speed: 15 rpmOutput speeds: 150, 300, 600, 900,1200, 1500, 1800 rpmCorresponding

12、increaser ratios: 10,20, 40, 60, 80, 100, and 120:1DesignconstraintsMinimum number of pinion teeth: 18Maximum face width/pinion pitchdiameter ratio: 1.25 per helixMinimum face contact ratio mf =1.00per helixNumber of planets- 5 for ratios up to 4:1- 4 for ratios between 4.05:1 i.e., the rotational i

13、nertia of thegearbox acts as a flywheel to smooth out loadfluctuations. They might also offer a betteropportunity to repair or rebuild the gearbox withoutremoving it from the tower.AcknowledgementsTheauthorwishestothankNoel Davisof VelaGearSystem and Mark Haller of Haller Wind Consultingfor their wi

14、secounsel duringthis project. Hethankshis wifeJanfor her patienceandtheAGMA stafffortheir support during the writing process.872686666118116685762716652Two stages, single helical Three stages, single helical Two stages, planetarystage with (5) planets,single helical output stageThree stages, planeta

15、rystage with (5) planets, singlehelical intermediate andoutput stagesFigure 4. 20:1 gear train options9362 5073687311912470696472Two stages, single helical Three stages, single helical Two stages, planetary stagewith (3) planets, singlehelical output stageThree stages, planetarystage with (5) planet

16、s,single helical intermediateand output stagesFigure 5. 40:1 gear train options980481321206836626272657243Stage 2carrierThree stages, single helical Three stages, planetarystage with (5) planets,single helical intermediateand output stagesThree stages, (2) planetarystages with (5) planets and(4) pla

17、nets, single helicaloutput stageFour stages, single helicalFigure 6. 60:1 gear train options80416747691206272726236133Three stages, single helical Three stages, planetarystage with (5) planets,single helical intermediateand output stagesThree stages, (2) planetarystages with (5) planets and(4) plane

18、ts, single helicaloutput stageFour stages, single helicalFigure 7. 80:1 gear train options1042743665129715657796272134Three stages, single helicalStage 2carrierThree stages, planetarystage with (5) planets,single helical intermediateand output stagesThree stages, (2) planetarystages with (5) planets

19、 and(4) planets plus singlehelical output stageFour stages, single helicalFigure 8. 100:1 gear train options13474421305672625771653680Stage 2carrierThree stages, single helical Three stages, planetarystage with (5) planets,single helical intermediateand output stageThree stages, (2)planetary stages

20、with (5)planets and (4) planetsplus single helical outputstageFour stages, single helicalFigure 9. 120:1 gear train options11Table 2. Evaluation of design casesCase IDGearboxCostcomparisonVolume comparison Weight comparisonaseearboxtypeRelative costRelativevolumeApproximatevolume, ft3RelativeweightE

21、stimated totalweight, lb10:ratiosA 1DH 3.44 6.62 428 5.84 50,041B 2HH 2.38 4.87 315 3.66 31,329C 1P 2.04 4.52 292 4.12 35,289D 2PH 1.12 1.43 93 1.25 10,72420:ratiosA 2HH 2.46 4.94 320 4.01 34,340B 3HHH 2.74 4.63 300 3.85 32,964C 2PH 1.21 2.29 148 1.52 13,054D 3PHH 1.53 2.09 135 1.53 13,14140:ratiosA

22、 2HH 2.82 6.60 427 4.91 42,050B 3HHH 2.71 4.75 307 4.38 37,498C 2PH 1.82 3.33 216 3.08 26,363D 3PHH 1.45 2.10 136 1.52 13,03960:ratiosA 3HHH 2.74 4.79 310 3.95 33,813B 3PHH 1.46 1.90 123 1.58 13,519C 3PPH 1.25 1.11 72 1.28 10,989D 4HHHH 2.97 5.27 341 3.95 33,79580:ratiosA 3HHH 2.75 4.79 310 4.00 34,

23、251B 3PHH 1.56 1.94 126 1.70 14,577C 3PPH 1.26 1.06 68 1.32 11,345D 4HHHH 2.94 5.31 344 3.94 33,781100:ratiosA 3HHH 2.77 5.32 345 4.19 35,894B 3PHH 1.64 2.25 146 1.77 15,170C 3PPH 1.20 1.00 65 1.28 10,985D 4HHHH 2.94 5.35 346 3.95 33,862120:ratiosA 3HHH 2.79 5.36 347 4.23 36,268B 3PHH 1.54 2.28 148

24、1.75 14,982C 3PPH 1.00 1.00 65 1.00 8,565D 4HHHH 2.64 5.35 346 4.13 35,357Number of stages; DH = double helical, P = planetary, H = helical12Table 3. 10:1 ratio - 150 RPM output speed design casesCase A Case B Case C Case DStage 1 Stage 1 Stage 2 Stage 1 Stage 1 Stage 2Number ofstages1 2 1 2Overall

25、ratio 10 10 10 10Gear data summaryStage 1 1 2 1 1 2Type DH External Helical Planetary Planetary External helicalCD (inches) 52.6678 39.4254 27.1214 24.2133 9.7102 25.5917CD (mm) 1338 1001 689 615 247 650cd1/cd2 NA NA 0.69 NA NA 2.64FW (total) 23.94 23.706 16.307 12.107 12.1378 14.624FW/CD 0.45 0.60

26、0.60 0.50 1.25 0.57F/D per helix 1.25 1.25 1.25 1.25 1.25 1.00Np 18 19 19 18 20 22Planet teeth NA NA NA 72 20 NANumber ofplanetsNA NA NA 3 5 NANg 180 60 60 162 60 55Ratio 10 3 3 10 4 3NDP 2 1 1 2 2 2Normal module 13 25 17 13 12 17NPA 23 25 25 25 25 25Helix 12 12 12 12 12 12Pinion PD 10 19 13 10 10 1

27、5Gear PD 96 60 41 39 10 37Ring PD NA NA NA 87 29.1306 NAPinion OD 11 21 15 11 11 16Gear OD 97 61 42 40 11 38Ring OD NA NA NA 95 36 NARing ID NA NA NA 86 28X1 0.20 0.22 0.22 0.00 0.00 0.20Mp 1.50 1.41 1.41 1.44 1.37 1.42Mf (per helix) 1.52 1.61 1.61 1.52 1.69 1.49Rating summaryRDC HP 4,023 4,023 4,02

28、3 4,023 4,023 4,023RDC kW 3,000 3,000 3,000 3,000 3,000 3,000Pinion rpm 150 47.37 150 150 60.00 150Cm 1.3 1.3 1.25 1.3 1.3 1.22Number ofmeshes1 1 1 3 5 1Mesh factor 1 1 1 2.7 4.5 1PacP 4,224 4,024 4,025 4,094 4,100 4,073PacG 4,696 4,243 4,243 4,590 4,415 4,248PatP 4,089 4,810 4,969 4,922 7,380 4,755

29、PatG 4,674 4,837 4,997 4,299 5,316 4,702SF(dur) 1.05 1.00 1.00 1.02 1.02 1.01SF(str) 1.02 1.20 1.24 1.22 1.32 1.18Number of gearedparts2 4 5 913Table 4. 20:1 ratio - 300 RPM output speed design casesCase A Case B Case C Case DStage 1 Stage 2 Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 1 Stage 2 St

30、age 3Number of stages 2 3 2 2Overall ratio 20 20 20 20Gear data summaryStage 1 2 1 2 3 1 2 1 2 3Type External helical External helical Planetary ExternalhelicalPlanetary External helicalCD (inches) 43.3237 33.3353 39.7666 30.2992 21.9501 9.7102 33.3353 9.7102 29.5268 22.0967CD (mm) 1100 847 1010 770

31、 558 247 847 247 750 561cd1/cd2 NA 0.77 NA NA 0.55 NA 3.43 NA NA 2.28FW 21.6805 11.112 23.546 13.466 7.683 12.1378 11.112 12.1378 10.334 10.414FW/CD 0.50 0.33 0.59 0.44 0.35 1.25 0.33 1.25 0.35 0.47F/D 1.25 1.00 1.25 1.00 0.49 1.25 1.00 1.25 0.61 0.71Np 18 18 18 18 31 20 18 20 22 25Planet teeth NA N

32、A NA NA NA 20 NA 20 NA NANumber ofplanetsNA NA NA NA NA 5 NA 5 NA NANg 72 90 58 63 55 60 90 60 55 50Ratio 4 5 3 4 2 4 5 4 3 2NDP 1 2 1 1 2 2 2 2 1 2Normal module 24 15 26 18 12 12 15 12 19 14NPA 25 25 25 25 23 25 25 25 25 25Helix 12 15 12 15 18 12 15 12 18 20Pinion PD 17 11 19 13 16 10 11 10 17 15Ge

33、ar PD 69 56 61 47 28 10 56 10 42 29Ring PD NA NA NA NA NA 29.1306 NA 29.1306 NA NAPinion OD 20 13 21 15 17 11 13 11 19 16Gear OD 71 57 62 48 29 11 57 11 42 30Ring OD NA NA NA NA NA 36 NA 36 NA NARing ID NA NA NA NA NA 28 NA 28 NA NAX1 0.20 0.20 0.20 0.20 0.13 0.00 0.20 0.00 0.20 0.17Mp 1.41 1.39 1.4

34、0 1.38 1.48 1.37 1.39 1.37 1.37 1.36Mf 1.52 1.54 1.52 1.54 1.56 1.69 1.54 1.69 1.39 1.52Rating summaryRDC HP 4,023 4,023 4,023 4,023 4,023 4,023 4,023 4,023 4,023 4,023RDC kW 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000Pinion rpm 60.00 300 48.33 52.50 86 60.00 300 60.00 150.00 300.00C

35、m 1.3 1.25 1.3 1.25 1.22 1.3 1.25 1.3 1.25 1.22Number ofmeshes1 1 1 1 1 5 1 5 1 1Mesh factor 1 1 1 1 1 4.5 1 4.5 1 1PacP 4,087 4,256 4,044 4,060 4,415 4,100 4,256 4,100 4,060 4,114PacG 4,356 4,583 4,268 4,301 4,533 4,415 4,583 4,415 4,234 4,248PatP 4,852 5,083 5,003 5,158 4,162 7,380 5,083 7,380 4,8

36、06 4,748PatG 5,154 5,444 5,126 5,328 4,140 5,316 5,444 5,316 4,747 4,655SF(dur) 1.02 1.06 1.01 1.01 1.10 1.02 1.06 1.02 1.01 1.02SF(str) 1.21 1.26 1.24 1.28 1.03 1.32 1.26 1.32 1.19 1.18Number of gearedparts4 6 9 1114Table 5. 40:1 ratio - 600 RPM output speed design casesCase A Case B Case C Case DS

37、tage 1 Stage 2 Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 1 Stage 2 Stage 3Number of stages 2 3 2 3Overall ratio 40 40 40 40Gear data summaryStage 1 2 1 2 3 1 2 1 2 3Type External helical External helical Planetary ExternalhelicalPlanetary External helicalCD (inches) 52.8838 28.507 39.7666 30.299

38、2 22.084 18.9089 28.2145 9.7102 28.8384 21.752CD (mm) 1343 724 1010 770 561 480 717 247 732 553cd1/cd2 NA 0.54 NA 0.76 0.56 NA NA NA NA 0.75FW 18.029 10 23.546 13.466 7.73 14.182 9.875 12.1378 11.535 7.613FW/CD 0.34 0.34 0.59 0.44 0.35 0.75 0.35 1.25 0.40 0.35F/D 1.25 1.25 1.25 1.00 0.80 1.25 1.22 1

39、.25 0.80 0.76Np 18 19 18 18 22 18 18 20 19 18Planet teeth NA NA NA NA NA 42 NA 20 NA NANumber ofplanetsNA NA NA NA NA 3 NA 5 NA NANg 114 120 58 63 78 102 108 60 57 60Ratio 6 6 3 4 4 7 6 4 3 3NDP 1 3 1 1 2 2 2 2 1 2Normal module 20 10 26 18 11 16 11 12 18 13NPA 25 25 25 25 23 25 25 25 25 20Helix 12 1

40、5 12 15 18 12 20 12 18 20Pinion PD 14 8 19 13 10 11 8 10 14 10Gear PD 91 49 61 47 34 26 8 10 43 33Ring PD NA NA NA NA NA 64.2902 NA 29.1306 NA NAPinion OD 16 9 21 15 11 13 9 11 16 11Gear OD 93 50 62 48 35 27 49 11 44 34Ring OD NA NA NA NA NA 73 NA 36 NA NARing ID NA NA NA NA NA 63 28X1 0.25 0.25 0.2

41、0 0.20 0.20 0.00 0.25 0.00 0.20 0.22Mp 1.41 1.39 1.40 1.38 1.55 1.39 1.33 1.37 1.36 1.48Mf 1.52 2.03 1.52 1.54 1.81 1.52 2.55 1.69 1.57 1.58Rating summaryRDC HP 4,023 4,023 4,023 4,023 4,023 4,023 4,023 4,023 4,023 4,023RDC kW 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000Pinion rpm 95.

42、00 600 48.33 52.50 171 100.00 600 60.00 180.00 600.00Cm 1.3 1.25 1.3 1.25 1.22 1.3 1.25 1.3 1.25 1.22Number ofmeshes1 1 1 1 1 3 1 5 1 1Mesh factor 1 1 1 1 1 2.7 1 4.5 1 1PacP 4,045 4,109 4,044 4,060 4,295 4,066 4,168 4,100 4,062 4,135PacG 4,404 4,472 4,268 4,301 4,552 4,446 4,526 4,415 4,273 4,370Pa

43、tP 4,459 4,633 5,003 5,158 4,176 5,852 4,965 7,380 5,178 4,778PatG 4,735 4,891 5,126 5,328 4,319 4,078 5,202 5,316 5,231 4,856SF(dur) 1.01 1.02 1.01 1.01 1.07 1.01 1.04 1.02 1.01 1.03SF(str) 1.11 1.15 1.24 1.28 1.07 1.01 1.23 1.32 1.29 1.19Number of gearedparts4 6 8 1015Table 6. 60:1 ratio - 900 RPM

44、 output speed design cases16Table 7. 80:1 ratio - 1200 RPM output speed design cases17Table 8. 100:1 ratio - 1500 RPM output speed design cases18Table 9. 120:1 ratio - 1800 RPM output speed design cases19Table 10. 80:1 ratio - 1200 RPM output speed design cases, effect ofnumber of planets on stage 1

45、 sizeCase A, 3 planets Case B, 4 planets Case C, 5 planetsStudy 1 Study 2 Study 3 Study 1 Study 2 Study 3 Study 1 Study 2 Study 3Number ofstages3 3 3Overall ratio 80 80 80Gear data summaryStage 1 2 3 1 2 3 1 2 3Type Planetary ExternalhelicalPlanetary ExternalhelicalPlanetary ExternalhelicalCD (inche

46、s) 15.7593 9.2473 19.5925 14.3823 9.2473 19.5925 9.7102 9.2473 19.5925CD (mm) 400 235 498 365 235 498 247 235 498cd1/cd2 NA NA 1.24 NA NA 1.36 NA NA 2.02FW 19.699 11.559 8.164 17.978 11.559 8.164 12.1378 11.559 8.164FW/CD 1.25 1.25 0.42 1.25 1.25 0.42 1.25 1.25 0.42F/D 1.25 1.25 1.25 1.25 1.25 1.25

47、1.25 1.25 1.25Np 18 18 18 18 18 18 20 18 18Planet teeth 18 18 NA 18 18 NA 20 18 NANumber ofplanets3 4 NA 4 4 NA 5 4 NANg 54 54 90 54 54 90 60 54 90Ratio 4 4 5 4 4 5 4 4 5NDP 1 2 3 1 2 3 2 2 3Normalmodule22 13 9 20 13 9 12 13 9NPA 25 20 20 25 20 20 25 20 20Helix 12 12 18 12 12 18 12 12 18Pinion PD 16

48、 9 7 14 9 7 10 9 7Gear PD 16 9 33 14 9 33 10 9 33Ring PD 47.2778899 27.741 NA 43.14684827.741 NA 29.1306623 27.741 NAPinion OD 17 10 7 16 10 7 11 10 7Gear OD 17 10 33 16 10 33 11 10 33Ring OD 60 35 NA 55 35 NA 36 35 NARing ID 46 27 NA 42 27 NA 28 27 NAX1 0.00 0.00 0.25 0.00 0.00 0.25 0.00 0.00 0.25M

49、p 1.49 1.49 1.51 1.49 1.49 1.51 1.37 1.49 1.51Mf 1.52 1.52 2.33 1.52 1.52 2.33 1.69 1.52 2.33Rating summaryRDC HP 4,023 4,023 4,023 4,023 4,023 4,023 4,023 4,023 4,023RDC kW 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000Pinion rpm 60.00 240.00 1200.00 60.00 240.00 1200.00 60.00 240.00 1200.00Cm 1.3 1.25 1.2 1.3 1.25 1.2 1.3 1.25 1.2Number ofmeshes3 4 1 4 4 1 5 4 1Mesh factor 2.7 3.6 1 3.6 3.6 1 4.5 3.6 1PacP 4,035 4,109 4,240 4,042 4,109 4,240 4,100 4,109 4,240PacG 4,244 4,380 4,566 4,309 4,380 4,566 4,415 4,380 4,566PatP 6,732 7,187 4,564 6,799 7,187 4,564

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1