1、ANSI/AGMA 6034-B92Revision of ANSI/AGMA 6034-A87Reaffirmed July 2010American National StandardPractice for EnclosedCylindrical Wormgear SpeedReducers and GearmotorsANSI/AGMA6034-B92iiPractice for Enclosed Cylindrical Wormgear Speed Reducers and GearmotorsAGMA 6034-B92(Revision of 6034-A87)Approval o
2、f an American National Standard requires verification by ANSI that the requirements for dueprocess, consensus, and other criteria for approval have been met by the standards developer.Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantialagreement has been
3、reached by directly and materially affected interests. Substantial agreement meansmuch more than a simple majority, but not necessarily unanimity. Consensus requires that all views andobjections be considered, and that a concerted effort be made toward their resolution.The use of American National S
4、tandards is completely voluntary; their existence does not in any respectpreclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing,or using products, processes, or procedures not conforming to the standards.The American National Standards Institute does
5、 not develop standards and will in no circumstances give aninterpretation of any American National Standard. Moreover, no person shall have the right or authority toissue an interpretation of an American National Standard in the name of the American National StandardsInstitute. Requests for interpre
6、tation of this standard should be addressed to the American GearManufacturers Association.CAUTION NOTICE: AGMA Standards are subject to constant improvement, revision, or withdrawal asdictated by experience. Any person who refers to any AGMA Technical Publication should be sure that thepublication i
7、s the latest available from the Association on the subject matter.Tables or other self-supporting sections may be quoted or extracted in their entirety. Credit lines should read:Extracted from AGMA 6034-B92, Practice for Enclosed Cylindrical Wormgear Speed Reducers andGearmotors with the permission
8、of the publisher, the American Gear Manufacturers Association, 1500 KingStreet, Suite 201, Alexandria, Virginia 22314.Approved February 7, 1992Reaffirmed March 1999American National Standards Institute, Inc.ABSTRACTThis standard gives a method for rating and design of specific enclosed cylindrical w
9、ormgear reducers andgearmotors at speeds not greater than 3600 rpm or mesh sliding velocities not more than 6000 ft/min (30 m/s).It contains power, torque and efficiency equations with guidance on component design, thermal capacity,service factor selection, lubrication, and self-locking features of
10、wormgears. Annexes are supplied on servicefactors and user recommendations.Copyright 1992 by American Gear Manufacturers AssociationPublished byAmerican Gear Manufacturers Association1500 King Street, Suite 201, Alexandria, Virginia 22314ISBN: 1-55589-576-XiiiContentsPageForeword v1 Scope1.1 Applica
11、bility 1.1.2 Exceptions 1.1.3 System considerations 1.1.4 References 1.2 Symbols and terminology 1.3 Rating3.1 Rating for standard materials and construction 2.3.2 Discussion of wear rating formula 33.3 Power formula 33.4 Empirical factors 5.3.5 Torque at wormgear 53.6 Efficiency 5.3.7 Life 53.8 Spe
12、cial construction 5.4 Component design4.1 Loading 144.2 Housing design 144.3 Bearings, bolting, keys, and shafting 14.4.4 Special seals and breathers 14.5 Thermal rating5.1 Sump temperature 15.5.2 Auxiliary cooling 155.3 Thermal rating determination 155.4 Special considerations 15.6 Reducer rating6.
13、1 No-load losses 156.2 Multiple reductions 15.6.3 Spur, helical, and spiral bevel gearing 166.4 Momentary overloads 167 Selection and service factors7.1 Equivalent input power 16.7.2 Service factors 167.3 Operating conditions 16.8 Lubrication8.1 Lubrication recommendations 17.8.2 Synthetic gear lubr
14、icants 178.3 Mild extreme pressure lubricants 19.8.4 High speed operation 198.5 Temperature limitations 19.ivContents (cont)Page8.6 Oil levels 19.8.7 Lubrication maintenance 198.8 Lubricants for the food and drug industry 209 Self-locking9.1 Self-locking static condition 209.2 Lead angle 20.9.3 Stat
15、ic friction angle 20.9.4 Testing 20.Tables1 Symbols used in equations 22 Ratio correction factors, Cm6.3 Velocity factors, Cv74 Metric velocity factors, Cv105 Coefficient of friction, m 11.6 Coefficient of friction, m (metric) 137 Overhung load factors 148 AGMA lubricant number recommendationsfor en
16、closed cylindrical wormgear drives 18.Figures1 Materials factor,Cs, for center distances 3.0 in (76 mm) 4.2 Maximum materials factor,Cs, for center distances 3.0 in (76 mm) BRONZE GEAR WITH WORM HAVING SURFACE HARDNESS OF 58 Rc MIN IO00 I i i i i 1 i i i i i i i i i i i i 3 i in I I I I I I I I CALl
17、bN I I I A. .-a. r*al m-r A IlT 800 1-i I i i i i i i Y C;HtC;K I-ItiUHt 1 HIWJ USE THE LOWER OF / THE TWO VALUES 3 0.5 1.0 C:TER DISTANCET:NCHES 2.5 3.0 12 20 30 40 50 60 70 CENTER DISTANCE - mm Figure 2 - Maximum materials factor, CS , for center distances o.o-20.9 ?l.O-21.9 22.0-22.9 23.0-23.9 24
18、.0-24.9 2x-25.9 26.0-26.9 27.0-27.9 28.0-28.9 29.0-29.9 30.0 0 0.6500 0.5300 0.4240 0.3435 0.2915 0.2602 0.2369 0.2182 0.2020 0.1888 0.1770 0.1665 0.1578 0.1500 0.1420 0.1350 0.1294 0.1231 0.1174 0.1120 0.1073 0.1033 0.0995 0.0962 0.0931 0.0901 0.0873 0.0849 0.0829 0.0813 0.0798 0.1 0.2 0.3 0.4 0.5
19、0.6 0.7 0.8 0.9 0.6412 0.6256 0.6130 0.6010 0.5890 0.5770 0.5652 0.5530 0.5408 0.5185 0.5078 0.4970 0.4854 0.4747 0.4640 0.4540 0.4437 0.4340 0.4150 0.4050 0.3962 0.3886 0.3809 0.3730 0.3650 0.3570 0.3501 0.3368 0.3300 0.3230 0.3180 0.3130 0.3083 0.3033 0.2984 0.2945 0.2876 0.2843 0.2807 0.2774 0.27
20、44 0.2714 0.2685 0.2655 0.2631 0.2576 0.2546 0.2517 0.2497 0.2467 0.2448 0.2428 0.2408 0.2389 0.2349 0.2330 0.2310 0.2290 0.2270 0.2251 0.2231 0.2211 0.2202 0.2162 0.2143 0.2130 0.2113 0.2100 0.2084 0.2064 0.2045 0.2025 0.2000 0.1990 0.1976 0.1966 0.1950 0.1940 0.1927 0.1918 0.1900 0.1879 0.1860 0.1
21、850 0.1840 0.1830 0.1820 0.1801 0.1791 0.1781 0.1760 0.1742 0.1732 0.1723 0.1720 0.1703 0.1694 0.1684 0.1674 0.1655 0.1645 0.1636 0.1620 0.1616 0,.1607 0.1597 0.1587 0.1580 0.1568 0.1558 0.1549 0.1540 0.1539 0.1530 0.1520 0.1510 0.1500 0.1490 0.1480 0.1470 0.1460 0.1460 0.1450 0.1440 0.1430 0.1420 0
22、.1410 0.1400 0.1390 0.1390 0.1380 0.1380 ol370 0.1360 0.1360 0.1350 0.1340 0.1336 0.1331 0.1325 0.1319 0.1313 0.1307 0.1300 0.1288 0.1282 0.1275 0.1269 0.1262 0.1256 0.1249 0.1243 0.1237 0.1225 0.1219 0.1213 0.1207 0.1202 0.1196 0.1190 0.1184 0.1179 0.1169 0.1164 0.1159 0.1153 0.1147 0.1142 0.1136 0
23、.1130 0.1125 0.1115 0.1110 0.1105 0.1100 0.1095 0.1090 0.1086 0.1081 0.1077 0.1069 0.1065 0.1061 0.1057 0.1053 0.1049 0.1045 0.1041 0.1037 0.1029 0.1025 0.1021 0.1017 0.1014 0.1010 0.1006 0.1002 0.0998 0.0992 0.0989 0.0986 0.0982 0.0979 0.0976 0.0972 0.0969 0.0966 0.0959 0.0956 0.0952 0.0949 0.0946
24、0.0943 0.0940 0.0937 0.0934 0.0928 0.0925 0.0922 0.0919 0.0916 0.0913 0.0910 0.0907 0.0904 0.0898 0.0895 0.0892 0.0889 0.0886 0.0883 0.0881 0.0878 0.0875 0.0870 0.0868 0.0865 0.0862 0.0860 0.0858 0.0855 0.0853 0.0851 0.0847 0.0845 0.0843 0.0841 0.0839 0.0837 0.0835 0.0833 0.0831 0.0827 0.0826 0.0824
25、 0.0823 0.0821 0.0820 0.0818 0.0816 0.0815 0.0812 0.0810 0.0809 0.0807 0.0805 0.0804 0.0802 0.0801 0.079s - - - - - - - - - C, for velocities 0 - 30 m/s 10 ANSVAGMA 6034-B92 Table 5 - Coefficient of friction, p Velocity range (ftlmin) p for velocities 0 - 359 Wmin 0 1 2 3 4 5 6 7 8 9 Q-9 0.1500 0.11
26、50 0.1110 0.1070 0.1030 0.0990 0.0970 0.0950 0.0940 0.0920 lo-19 0.0900 0.0890 0.0880 0.0870 0.0860 0.0850 0.0840 0.0830 0.0820 0.0810 20-29 0.0800 0.0792 0.0786 0.0779 0.0772 0.0765 0.0758 0.0751 0.0744 0.0737 30-39 0.0730 0.0726 0.0722 0.0718 0.0714 0.0711 0.0707 0.0703 0.0699 0.0695 40-49 0.0691
27、0.0687 0.0684 0.0680 0.0676 0.0673 0.0669 0.0665 0.0661 0.0658 50-59 0.0654 Cl.0651 0.0647 0.0644 0.0640 0.0637 0.0634 0.0630 0.0627 0.0623 60-69 0.0620 0.0618 0.0616 0.0614 0.0612 0.0610 0.0608 0.0606 0.0604 0.0602 m-79 0.0600 0.0598 0.0596 0.0594 0.0592 0.0590 0.0588 0.0586 0.0584 0.0582 80-89 0.0
28、580 0.0578 0.0576 0.0574 0.0572 0.0570 0.0568 0.0566 0.0564 0.0562 go-99 0.0560 0.0558 0.0556 0.0554 0.0552 0.0550 0.0548 0.0546 0.0544 0.0542 100-l 09 0.0540 0.0539 0.0538 0.0537 0.0536 0.0535 0.0534 0.0533 0.0532 0.0531 110-119 0.0530 0.0528 0.0527 0.0526 0.0525 0.0524 0.0523 0.0522 0.0521 0.0520
29、120-l 29 0.0519 0.0518 0.0517 0.0516 0.0515 0.0514 0.0513 0.0512 0.0511 0.0510 130-139 0.0509 0.0507 0.0506 0.0505 0.0504 0.0503 0.0502 0.0501 0.0500 0.0499 140-l 49 0.0498 0.0497 0.0496 0.0495 0.0494 0.0493 0.0492 0.0491 0.0490 0.0489 150-l 59 0.0488 0.0486 0.0485 0.0484 0.0483 0.0482 0.0481 0.0480
30、 0.0479 0.0478 160-169 0.0477 0.0476 0.0475 0.0474 0.0473 0.0472 0.0471 0.0470 0.0469 0.0468 170-l 79 0.0467 0.0465 O.Q464 03463 0.0462 0.0461 0.0460 0.0459 0.0458 0.0457 180-l 89 0.0456 0.0455 0.0454 0.0453 0.0452 0.0451 0.0450 0.0449 0.0448 0.0447 190-l 99 0.0446 O. s I c 5 5 I , I 1 , 1 1 i 1 4 5
31、 6 7 8 9 0.0340 0.0340 0.0339 0.0339 0.0338 0.0338 0.0336 0.0336 0.0335 0.0335 0.0335 0.0335 0.0333 0.0333 0.0332 0.0332 0.0331 0.0331 0.0329 0.0329 0.0328 0.0328 0.0327 0.0327 0.0325 0.0325 0.0324 0.0324 0.0324 0.0324 0.0322 0.0321 0.0321 0.0321 0.0321 0.0321 0.0319 0.0319 0.0318 0.0318 0.0317 0.03
32、17 0.0316 0.0316 0.0315 0.0315 0.0314 0.0314 p-0313 0.0313 0.0312 0.0312 0.0311 0.0311 0.0309 0.0309 0.0308 0.0308 0.0308 0.0308 0.0306 0.0306 0.0305 0.0305 0.0305 0.0305 0.0303 0.0303 0.0302 0.0302 0.0301 0.0301 0.0300 0.0300 0.0299 0.0299 0.0298 0.0298 0.0297 0.0297 0.0296 0.0296 0.0295 0.0295 0.0
33、287 0.0286 0.0282 0.028C 0.0278 0.0276 0.0266 0.0265 0.0263 0.0261 0.0259 0.0257 0.0249 0.0248 0.0246 0.024 0.0242 0.0242 0.0235 0.0234 0.0233 0.0231 0.023C 0.0228 0.0223 0.0222 0.0221 0.022c 0.0219 0.0218 0.0214 0.0213 0.0212 0.0211 0.021c 0.0209 0.0205 0.0204 0.0203 0.020: 0.0202 0.0202 0.0197 0.0
34、196 0.0196 0.0195 0.0194 0.0193 0.0190 0.0189 0 0189 0.018E 0.0187 0.0186 0.0184 0.0183 0.0183 0.018: 0.0182 0.0181 0.0178 0.0177 0.0177 0.017c 0.017E 0.0175 0.0173 0.0173 0.0173 0.017; 0.0172 0.0172 0.0169 0.0169 0.0169 0.0165 0.016rhing _ Transmitted Torque Pitch Radius of Mounted Member The weigh
35、t of the mounted member should be added vectorially to the overhung load, calculated as shown above. The result becomes the total overhung load. This calculated overhung load shall not exceed the allowable overhung load as determined in 4.1.1,4.1.2, and 4.1.3. 4.1.5 Special considerations When an “a
36、s cast” pinion is mounted on the output shaft, or a cut pinion is run with an as cast” gear, due consideration shall be given to the dynamic disturbance resulting from this type of gear tooth action. In these cases, higher overhung load factors may be required. Table 7 - Overhung load factors Drive
37、type Factor Single or multiple chain 1.00 Timing belt 1.00 Cut pinion run with cut gear 1.25 Single or multiple vee belt 1.50 Flat belt 2.50 Variable pitch pulley 3.50 Other types Consult drive manufacturer 4.2 Housing design The housing may be of the commonly used designs, provided it is sufficient
38、ly rigid to maintain shaft positions in substantial alignment under maximum allowable loading. 4.3 Bearings, bolting, keys, and shafting These components shall be designed in accordance with the following. 4.3.1 Basis for component design Component design is to be based on loading as specified in 4.
39、1, with due consideration for momentary or starting loads. 4.3.2 Design values Refer to ANSI/AGMA 6001-C88 for general design guidelines. These guidelines do not preclude a more detailed analysis, if desired. NOTE - Allowable design values for bolting, shafting, keys, and bearings are modified for t
40、he permissible peak loading of 300 percent allowed for wormgearing, versus200percentforothertypes of gearing (see 6.4). 4.4 Special seals and breathers It is recognized that when units are applied to certain industries, special seals and breathers should be considered for units applied in dusty and
41、corrosive atmospheres such as chemical plants, cement mills, and taconite processing plants. It is also recommended that moisture barrier seals be considered for units which are to be subjected to severe moisture or vapor-laden atmospheres. Enclosed gearing in wet locations and subject to direct or
42、indirect water washdown, such as in the paper and food industries, generally requires extra protection. 14 ANSUAGMA 6034-B92 5 Thermal rating The thermal capacity is the powera unit will transmit continuously without exceeding the temperature in 5.1. The thermal rating is normally determined by the
43、manufacturer. It is applied only when the me- chanical power is higher than the thermal rating, and no cooling provisions are made. NOTE - Service factors are not to be applied to the transmitted load for determining thermal capacity limitations. 5.1 Sump temperature The thermal ratings are based on
44、 an operating sump temperature rise of 100F (56%) above ambient. The maximum sump temperature is not to exceed 200F (93%). 5.2 Auxiliary cooling When insufficient thermal capac-ky exists, the oil may be cooled by a number of methods including fans, an external sump, or internal and external coolers.
45、 5.3 Thermal rating determination The thermal rating may be determined by testing, applying the following qualifications: - Oil level. The unit is to operate at rated speed and load, filled to design oil level with the recommended lubricant; - Run-in. The determination of oil temperature rise is to
46、be made afterthe unit has been “run-in”; - Operation. The unit is to be operated continu- ously until a steady condition of oil temperature is assured; - Point of measurement. The temperature of the lubricant is to be measured at a point approxi- mately one-half the worm outside diameter from the mi
47、d-point of the worm threads, if the worm is below or beside the gear, and 0.5 in (12.7 mm) from the gear outside diameter when the worm is mounted above the gear. The point of measure- ment shall also be sufficiently below the static oil level to ensure proper determination of the bulk oil temperatu
48、re. 5.4 Special considerations In applying the reducer thermal ratings determined above, special consideration should be given to factors which affect rates of heat transfer, because they can greatly increase or decrease the thermal rating. Factors that could decrease thermal rating include operatio
49、n in an enclosed space, operation in a very dusty atmosphere where fine material covers the gear unit, operation in a high temperature ambient such as near motors, turbines, or hot processing equipment, operation at high altitudes, and operation in the presence of solar or radiant energy. Factors that could increase thermal rating include mounting on a significant heat sink, low ambient temperatures, operation in a continuous flow of air, intermittent loading, or variable load conditions. 6 Reducer rating Reducer rating is the power that can be transmitted without exceedi
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1