ImageVerifierCode 换一换
格式:PDF , 页数:8 ,大小:407.81KB ,
资源ID:422377      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-422377.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(AGMA 94FTM2-1994 Analytical Method for the Calculation of the Efficiency of Planetary Gears《计算行星齿轮功率的分析方法》.pdf)为本站会员(syndromehi216)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

AGMA 94FTM2-1994 Analytical Method for the Calculation of the Efficiency of Planetary Gears《计算行星齿轮功率的分析方法》.pdf

1、 STD-AGMA S4FTM2-ENGL 1994 = Ob87575 0004543 352 94FTM2 An Analytical Method for the Calculation of the Efficiency of Planetary Gears by: Michel Pasquier, Gear Department - CETIM, France and Pierre Foucher, Ecole Suprieure de 1Energie et de Matriaux ORLEANS, France American Gear (VVVVVVVVV Manufactu

2、rers Association TECHNICAL PAPER COPYRIGHT American Gear Manufacturers Association, Inc.Licensed by Information Handling ServicesAn Analytical Method for the Calculation of the Efficiency of Planetary gears Michel Pasquier, Gear Department - CETIM, France and Pierre Foucher, Ecole Suprieure de IEner

3、gie et de Matriaux ORLEANS, France me statements and opinions contained herein are those of the author and should not be conshued as an official action or opinion of the American Gear Manufacturers Association. ABSTRACT This paper presents a synthesis of an analytical method for the calculation of t

4、he efficiency of simple or compound planetary gear aainS. It is based on fundamentals formulae. It is intended to improve the accuracy of the rating of the efficiency of pianetary gears to be included in a caicuiation of the thermal capacity. Copyright O 1994 American Gear Manufacturers Association

5、1500 King Street, Suite 201 Alexandria, Vrrginia, 223 14 October, 1994 ISBN 1-555894367 COPYRIGHT American Gear Manufacturers Association, Inc.Licensed by Information Handling ServicesSTD-AGMA SLiFTM2-ENGL 1774 b87575 0004543 125 W AN ANALYTICAL METHOD FOR THE CALCULATION OF THE EFFICIENCY OF PLANET

6、ARY GEARS MICHEL PASQUIER - Dr PIERRE FOUCHER“ +GEAR DEPARTMENT - CETIM (FRANCE) *+ Ecole Suprieure de IEnergie et de Matriaux ORLEANS (FRANCE) 1 INTRODUCTION In the industrial field, planetary (or epicyclic) gears are generally designed for high speed applications such as turbo gear drives. They ar

7、e also used when very high torque must be transmitted at medium and low speed (vertical cement mill . ). Sometimes planetary gears are appropriated when dimensions of a gear unit with an equivalent gear ratio or transmitted torque is excessive (manufacturing, transportation.), for example marine gea

8、r for high torque Diesel engine. Planetary gears are very often applied in automotive industry, such as trucks gear boxes, automatic automotive gear boxes and axle drives. In the industrial field the arrangements of epicyclic gears is generally quite the same. In special applications, specific arran

9、gements are designed. But in automotive industry, arrangements are more complex and very different. These arrangements are intended to realise many ratio, to make compatible the dynamic of the engine (torque vs speed) with respect to the dynamic of vehicle. That is the reason why the efficiency of p

10、lanetary gears has been studied by gear designers of automotive industry. 111, 121. The efficiency of industrial planetary gears is rarely one of the main problems. This is quite different in automotive industry and for special applications such as spatial application where a very high ratio is requ

11、ired in conjunction with a low number of meshes and a minimum amount of soacai The above mentioned studies proposes graphical methods, which sometimes may be difficult to use, even for an experienced gear designer. More recently to improve the knowledge, automotive gear designers have developed more

12、 accurate and more user friendly methods i31. This paper presents a synthesis of an analytical method, which may be included in the design stage of a planetary gear, because it is based on very well known fundamental formulae of planetary gears. 2 FUNDAMENTAL FORMULAE OF THE MOTION OF A PLANETARY GE

13、AR TRAIN 2.1 KINEMATICS FORMULAE In order to simplify the following explanations, let us consider a simple planetary gear like those drawn on figure 1. It is made of two kinds of gears: One external gear (1)-(4) and one internal gear (4142) It is obvious that the results may be applied to other plan

14、etary gear trains including more than two types of gears. Let us consider two coordinate systems - I?, (O,Z0 ,yo ,io) related to the frame (Reference coordinate system). - R, (O,?, ,i3 ,f3) related to the planet carrier. (relative coordinate system) The motion of R, with respect to R, may be written

15、 as follows: COPYRIGHT American Gear Manufacturers Association, Inc.Licensed by Information Handling ServicesIn the relative coordinate system R3 (O, ji3 , p3 ,I3 ) , an observer located on the planet carrier can see that this one has an equivalent function to a housing for the gears. (The planet ca

16、rrier is fixed in this coordinate system R3). So, in this coordinate system R3 the motion of a planetary gear is the same as a gear unit with two gear sets connected together. I Figure 1 - example of simple planetary gear It is assumed that: - w : is the rotation speed of the component i (in rdls) w

17、ith respect to the cornponentj . - The number of teeth are always positive. In the coordinate system R3 , the gear ratio ub of the first gear set (1 1- (4 may be written as follows: . (1) O13 - O10 -O30 “4 =bZE - - O43 O40 21 where Z; = number of teeth of the lSt planet gear 2, = number of teeth of

18、the sun gear E = -I if (1 - (4) is an externat gear set E = +1 if (1 - (4) is an internal gear set The gear ratio of the second gear i 4) - (2) may be written as follows: . (1“) =zq *, =a10 -030 vaio =a20 -030 aio =o. . A training motion with a rotation speed equal to the rotation speed of the plane

19、t carrier O 3o 3 COPYRIGHT American Gear Manufacturers Association, Inc.Licensed by Information Handling Services2.2 STATIC FORMULA 3 CALCULATION OF THE EFFICIENCY It is assumed that the rotation speed of each component is constant, and so the dynamic moment of the planetary gear is equal to O. So t

20、he dynamic moment theorem applied to the planetary gear may be written as fol1ows:ialgebraic formula) E, +E2 +E, =o=.c, =-(cl +C2) 2.3 ENERGETIC FORMULAE , . . (6) Assume that: eo =lOlo = Input power (O) or output power (O) or output power i O) or output power i O1 E = Output power on driven shaft (

21、O) Applying the principle of conservation of energy in the reference coordinate system Ro, we obtain:(algebraic formula) this without any consideration on the arrangement. 3.3.3 Star power is lower than input power If the input star power 6, or pZ3 is lower than the actual input power Fm, it exists

22、a “sharing of power“. That means the efficiency of the planetary gear is higher than those of a gear unit that have the same ratio. 3.4 APPLICATION TO COMPOUND PLANETARY GEARS The above method may be applied to compound planetary gears. Additional formula have to be written especially kinematics and

23、 static. In the simple case of a coupled planetary gear, the efficiency should be calculated for each of the simple planetary gears of the coupled planetary gear. The total efficieiicy is equal to the product of the efficiency of each simple planetary gears. To couple each simple planetary gears the

24、 dynamic moment theorem has to be applied on the common shaft which connects each planetary gears. Sometime this is not very easy to write the formula especially when a coupling or a joint is used because its efficiency has to be introduced like the “equivalent meshing efficiency“ of each gearing. 3

25、.5 SIMPLIFIED METHOD A simplified method may be developed when the following exists: - the star ratio of the planetary gear (simple or compound) is superior to 1. -The star efficiency qb is close to 1. The star power 6, may be easily written as a function of the actual power 6, or pz0 The efficiency

26、 may be written as follows: n = number of meshes 4 EXAMPLE OF CALCULATION . (17) A simple fixed differential gear is shown in the following figure 4. (3) is the input shaft and (2) is the output shaft. (1 ) is the fixed gear. A differential gear enables a very high ratio with only few gears and a mi

27、nimum amount of space. The fundamental equations of the simple four differential gear are as follows: 4.1 Hypothesis and assumptions. input = 131 output = 121 fixed = i11 4.2 Equations The star ratio is: 5 COPYRIGHT American Gear Manufacturers Association, Inc.Licensed by Information Handling Servic

28、es STD-AGHA SqFTflZ-ENGL 1774 W Ob87575 0004546 707 D end the cmputation of the gear ratio gives: “ =%=I- I O30 b cornputation of the star efficiency The computation of the efficiency using detailed method gives: (l), (7), (9), (1 1) and (1 5) llb -l) hbUb -I) ?= Figure 4- Fixed differential planeta

29、ry gear 4.3 Numerical application: First, assume that the number of teeth of each annulus is respectively equal to z1 =78andz2 =73. Let us assume that: - the output torque is always considered equal to c2 = -94915.25rnN(-840,000/b.in) - the input rotation speed is always considered equal to 030 =157

30、rd.s-+0 The ratio is equal to: 65 I 60 I 1,014 10.0138 22 I 19 I 1,08 I 0,074 The star power p13 and Pz3 are equal to: -14,283,021 14,871,950 -14.1 13,991 14,695,951 22 -1 3,251,470 13,797.865 The efficiency is equal to: 0,048 1 ,O4 0.26 1 ,O4 0,66 5 CONCLUSION Since this method is an analytical one

31、, it can be easily included as a part of a software for the design of planetary gears. That means the calculations which are sometimes complex, depending on the arrangement, becomes more easily to undertake. This method gives an accurate value of the efficiency. It is quite obvious that it depends o

32、n the accuracy of the value of the efficiency determined for all individual components of the planetary gear train. This accuracy becomes now very important with one of the mains topics of research and standardisation: The thermal capacity of industrial gears. In the case of planetary gears, the mai

33、n source of heat is the planetary gear train itself. REFERENCES l I Le train plantaire: De la cinmatique au rendement - Tomes 1 et 2 G FLEISCHEL - S.1.A 21 Les trains picycloidaux P RAVIGNEAUX i31 MECANIQUE DES TRAINS PLANETAIRES DES BOITES DE VITESSE - 1 partie: Etude cinematique, dynamique et energetique des trains plantaires engrenages P FOUCHER P LEPELLETIER i41 DUDLEYS GEAR HANDBOOK second edition Dennis P TOWSEND Mc GRAW HIIL -C.L.E.S.I.A - 1962 S.1.A - C.L.E.S.1.A . . 6 COPYRIGHT American Gear Manufacturers Association, Inc.Licensed by Information Handling Services

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1