ImageVerifierCode 换一换
格式:PDF , 页数:11 ,大小:99.94KB ,
资源ID:422607      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-422607.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(AHRI GUIDELINE E-1997 Fouling Factors A Survey Of Their Application In Today's Air Conditioning And Refrigeration Industry.pdf)为本站会员(registerpick115)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

AHRI GUIDELINE E-1997 Fouling Factors A Survey Of Their Application In Today's Air Conditioning And Refrigeration Industry.pdf

1、 AHRI Guideline E (formerly ARI Guideline E) 1997 GUIDELINE for Fouling Factors: A Survey Of Their Application In Todays Air Conditioning And Refrigeration Industry Price $10.00 (M) $20.00 (NM) Copyright 1997, by Air-Conditioning, Heating, and Refrigeration Institute Printed in U.S.A. Registered Uni

2、ted States Patent and Trademark Office IMPORTANT SAFETY RECOMMENDATIONS It is strongly recommended that the product be designed, constructed, assembled and installed in accordance with nationally recognized safety requirements appropriate for products covered by this guideline. ARI, as a manufacture

3、rs trade association, uses its best efforts to develop guidelines employing state-of-the-art and accepted industry practices. However, ARI does not certify or guarantee safety of any products, components or systems designed, tested, rated, installed or operated in accordance with these guidelines or

4、 that any tests conducted under its standards will be non-hazardous or free from risk. Note: This guideline supersedes ARI Guideline E-1988. TABLE OF CONTENTS SECTION PAGE Section 1. Purpose 1 Section 2. Scope . 1 Section 3. Definitions. 1 Section 4. Background . 1 Section 5. Current Status 2 Sectio

5、n 6. Implementation . 2 Section 7. Conclusions . 2 APPENDICES Appendix A. References - Normative . 4 Appendix B. References - Informative . 4 Appendix C. Field Fouling Allowance Calculation 5 AHRI GUIDELINE E-1997 1 FOULING FACTORS: A SURVEY OF THEIR APPLICATION IN TODAYS AIR CONDITIONING AND REFRIG

6、ERATION INDUSTRY Section 1. Purpose 1.1 Purpose. The purpose of this guideline is to consider the influence of fouling of heat transfer surfaces as it affects water-chilling evaporators and water-cooled condensers used in the air conditioning and refrigeration industry. Recently completed research w

7、ork sponsored by ASHRAE (see B1.1 and B1.2) has shown that revisions to the fouling factors allowances for evaporators are justifiable and will be included in the latest revisions of ARI standards. This guideline also supports these revisions.1.1.1 Intent. This guideline is intended for the guidance

8、 of the industry, including manufacturers, engineers, installers, contractors and users. 1.1.2 Review and Amendment. This guideline is subject to review and amendment as technology advances. Section 2. Scope 2.1 Scope. This guideline pertains to fouling factor allowances as applied to centrifugal an

9、d rotary screw water chilling packages/positive displacement compressor water chilling packages as well as absorption water chilling and water heating packages, covered by ARI Standards 550/590 and 560 respectively. 2.1.1 Exclusions. This guideline does not apply to field fouling allowances as appli

10、ed to water source heat pumps, covered by ARI Standards 320, 325, 330, 450 and 480. Section 3. Definitions 3.1 Definitions. All terms in this document will follow the industry definitions established in the current ASHRAE Terminology of Heating, Ventilation, Air-Conditioning and Refrigeration, unles

11、s otherwise defined in this section. 3.2 Fouling Factor. The thermal resistance due to the accumulation of contaminants on the water-side of the heat transfer surface. Section 4. Background 4.1 Water-cooled refrigerant condensers and water-chilling evaporators used in the air-conditioning and refrig

12、eration industry are applied principally in field-installed water systems. These water systems may be closed- or open-loop systems. In general, they are subject to the accumulation of contaminants, termed “fouling,“ on the water-side of heat transfer surfaces. This fouling gradually increases therma

13、l resistance and degrades overall performance of the equipment. It has been the practice in the industry to only allow for the accumulation of fouling on the water-side of the tubes. The refrigerant side does not see any fouling due to the cleanliness of the refrigerant system. The water can be on t

14、he inside or outside of the tubes depending on the design of the heat exchanger. 4.2 New heat exchangers are essentially free of water-side fouling. Fouling is understood to be progressive with time, and dependent on the quality and temperature of water used. Until recently there was very little pub

15、lished data predicting the rate of fouling for heat exchangers in typical air conditioning and refrigeration service. For many years, the basic reference has been the heat exchanger manual Standards of the Tubular Exchangers Manufacturers Association, which gives very general recommendations for a w

16、ide variety of cases. Perhaps based on this, the air conditioning industry has for decades commonly used an assumed fouling level of 0.0005 hr ft2F/Btu 8.8 x 10-5m2 C/W in both condensers and evaporators. In ARI Guideline E-1988, the assumed fouling allowance was reduced to 0.00025 or 2.5 x 10-4hr f

17、t2F/Btu 4.4 x 10-5m2 C/W based on available data at that time. Therefore in subsequent ARI standards, the level of fouling that was used in the selection of machines was 0.00025 or 2.5 x 10-4hr ft2F/Btu 4.4 x 10-5m2 C/W for both the evaporator and the condenser. Thus published Standard Ratings provi

18、ded for increment of fouling in application (hereafter called “field fouling allowance“) of 0.00025 or 2.5 x 10-4hr ft2F/Btu 4.4 x 10-5m2 C/W above factory tested conditions. The equations used and a further explanation of the field fouling allowance is covered in Appendix C. AHRI GUIDELINE E-1997 2

19、 4.3 Water-side fouling of heat exchangers can have a significant impact on the performance of air-conditioning and refrigeration equipment. For example, a water-cooled water chilling refrigeration system operating fully loaded at temperature of 44F 7C leaving chilled water, 95F 35C leaving condense

20、r water, and with clean tubes might have a saturated suction temperature of 42F 6C and a saturated discharge temperature of 97F 36 C (42/97F) 6/36C, resulting in operation at 0.60 kw/ton. If evaporator and condenser both acquire water-side fouling of 0.00025 or 2.5 x 10-4hr ft2/Btu 4.4 x 10-5m2 C/W,

21、 operating conditions might be expected to move to 41/98oF 5/37C resulting in 0.65 kw/ton; thus increasing operating costs by 8%. The impact could be greater or less than this, depending on the type and amount of tube surface used in condenser and evaporator. Section 5. Current Status Several events

22、 have occurred in recent years to change the way the industry deals with fouling, as noted in the following paragraphs: 5.1 The air conditioning industry has been under pressure to improve unit efficiency and has responded with significant improvements. This has been done through improved compressor

23、s and improved heat exchangers to reduce the approach temperatures within heat exchangers. Where heat exchangers used to have 5 to 6F 2.7 to 3.3C leaving temperature differences, many applications now have and 2F 1.1C leaving temperature differences. With these small leaving temperature differences

24、the field fouling allowance of 0.00025 or 2.5 x 10-4hr ft2F/Btu 4.4 x 10-5m2 C/W is now more of the total heat transfer resistance than it was when designs were based on 5F and 6F 2.7C and 3.3C leaving temperature differences. Due to this, the use of a field fouling allowance of 0.00025 or 2.5 x 10-

25、4hr ft2F/Btu 4.4 x 10-5m2 C/W can in some cases result in the selection of different equipment than if the field fouling allowance were lower. This will then result in equipment that may not be as efficient when operating with clean tubes. 5.2 As a result of a lack of fundamental data to justify the

26、 use of a field fouling allowance of 0.00025 or 2.5 x 10-4hr ft2F/Btu 4.4 x 10-5m2 C/W, a research project was undertaken by ASHRAE to evaluate water quality and its effects on fouling and to experimentally study the tube-side fouling resistance in water chiller flooded evaporators. The details of t

27、hese studies are summarized in ASHRAE papers listed in Appendix B. 5.3 In the work associated with reference B1.2, several experimental tests were run with various combinations of clean water, dirty water, different tube types, and 3 ft/sec. 0.9 m/s and 7 ft/sec. 2.1 m/s water velocities. The result

28、s indicated that even in the worst case, the level of fouling after extended operation was less than 11.6% of the standard practice of using 0.00025 or 2.5 x 10-4hr ft2F/Btu 4.4 x 10-5m2 C/W. This result indicates that for evaporators, the 0.00025 or 2.5 x 10-4hr ft2F/Btu 4.4 x 10-5m2 C/W is overly

29、conservative and is counter to the efforts to improve operating efficiency of chillers. From these results, a field fouling allowance of 0.0001 or 1.0 x 10-4hr ft2F/Btu 1.8 x 10-5m2 C/W appears to be more appropriate for evaporators and is the recommendation of this guideline. This does not apply to

30、 condensers, as experimental data for condensers has not been developed. It is expected that the condenser would most likely have a higher fouling due to the higher temperatures of the water and the formation of biological fouling. Note that research has shown that temperature can be a strong contri

31、butor to the rate of fouling and condenser water is much warmer than evaporator water. Also cooling towers tend to have more contaminants in the water due to the loss of water due to evaporation in the tower. 5.4 ASHRAE is planning to continue fouling research on condensers, but results are now conc

32、lusive that a fouling allowance for evaporators of 0.00025 or 2.5 x 10-4hr ft2F/Btu 4.4 x 10-5m2 C/W is overly conservative and should be reduced to the 0.0001 or 1.0 x 10-4hr ft2F/Btu 1.8 x 10-5m2 C/W . Section 6. Implementation 6.1 In response to the above mentioned developments, ARI began an effo

33、rt to reconcile the treatment of fouling in its product standards with current knowledge and methods. By so doing, it was anticipated that old unsupported practices would be dropped and the new evaporator field fouling allowances adopted. This effort will allow for the continued improvement and opti

34、mization of air-conditioning and refrigeration equipment and the reduction in energy operating costs through proper selection of equipment. Section 7. Conclusions 7.1 The air-conditioning and refrigeration industry will adopt the new evaporator field fouling allowance of 0.0001 or 1.0 x 10-4 hr ft2F

35、/Btu 1.8 x 10-5m2 C/W under the assumption that closed-loop systems are used. If other systems are used then different field fouling allowances may be required. AHRI GUIDELINE E-1997 3 7.2 Until further research is completed on condensers, the industry will continue to use the previous field fouling

36、 allowance of 0.00025 or 2.5 x 10-4hr ft2F/Btu 4.4 x 10-5m2 C/W. 7.3 The air conditioning and refrigeration industry should support additional ASHRAE research on fouling of condensers, leading to further improvements to the field fouling allowance. 7.4 Manufacturers, in adjusting from “as tested“ pe

37、rformance to predicted field fouling performance, should use the calculation methods outlined in ARI Standards 450 and 480. This assumes that all factory tests will have clean tubes with no fouling. AHRI GUIDELINE E-1997 4 APPENDIX A. REFERENCES - NORMATIVE None. APPENDIX B. REFERENCES - INFORMATIVE

38、 B1 Listed here are standards, handbooks, and other publications which may provide useful information and background but are not considered essential. All references in this appendix are not considered as part of this guideline. B1.1 A Survey of Water Quality And Its Effect On Fouling In Flooded Wat

39、er Chiller Evaporators by S.I. Haider, R.L. Webb, A.K. Meitz, American Society of Heating, Refrigerating and Air-Conditioning Engineers, 1791 Tullie Circle, N.E., Atlanta, GA 30329, U.S.A. B1.2 An Experimental Study of Tube-Side Fouling Resistance in Water-Chilled Flooded Evaporators by S.I. Haider,

40、 R.L. Webb, A.K. Meitz, American Society of Heating, Refrigerating and Air-Conditioning Engineers, 1791 Tullie Circle, N.E., Atlanta, GA 30329, U.S.A. B1.3 AHRI Standard 450-93 (formerly ARI Standard 450-93), Water-Cooled Refrigerant Condensers, Remote Type, 1993, Air-Conditioning, Heating, and Refr

41、igeration Institute, 2111 Wilson Boulevard, Suite 500, Arlington, VA 22201, U.S.A. B1.4 AHRI Standard 480-95 (formerly ARI Standard 480-95), Refrigerant-Cooled Liquid Coolers, Remote Type, 1995, Air-Conditioning, Heating, and Refrigeration Institute, 2111 Wilson Boulevard, Suite 500, Arlington, VA 2

42、2201, U.S.A. B1.5 AHRI Standard 550/590-97 (formerly ARI Standard 550/590-97), Water Chilling Packages Using the Vapor Compression Cycle, 1997, Air-Conditioning, Heating, and Refrigeration Institute, 2111 Wilson Boulevard, Suite 500, Arlington, VA 22201, U.S.A. B1.6 AHRI Standard 560-92 (formerly AR

43、I Standard 560-92), Absorption Water Chilling and Water Heating Packages, 1992, Air-Conditioning, Heating, and Refrigeration Institute, 2111 Wilson Boulevard, Suite 500, Arlington, VA 22201, U.S.A. B1.7 AHRI Guideline E-1988 (formerly ARI Guideline E-1988), Fouling Factors: A Survey Of Their Applica

44、tion In Todays Air-Conditioning And Refrigeration Industry, 1988, Air-Conditioning, Heating, and Refrigeration Institute, 2111 Wilson Boulevard, Suite 500, Arlington, VA 22201, U.S.A. B1.8 Standards of the Tubular Exchangers Manufacturers Association, Tubular Exchanger Manufacturers Association, 25

45、North Broadway, Tarrytown, NY 10591, U.S.A. AHRI GUIDELINE E-1997 5 APPENDIX C. FIELD FOULING ALLOWANCE CALCULATION C.1 Rating Basis. Q = UoAoLMTD Uo= 1/Rowhere: Q = Heat transfer rate Ao= Surface area outside, ft2m2 LMTD = Log mean temperature difference Uo= Overall heat transfer coefficient based

46、on outside area Tw = Temperature of water, F C Tr = Temperature of refrigerant, F C Ro= Overall thermal resistance, hrft2F/Btu m2 C/W Rf = Field fouling allowance, hrft2F/Btu cm2 C/W Rm = Tube metal resistance, hrft2F/Btu cm2 C/W hw = Water-side heat transfer coefficient hr = Refrigerant heat transf

47、er coefficient Ro= 1/hw + Rf + Rm + 1/hrz Condensers Evaporators ARI Guideline E-1988 0.00025 or 2.5 x 10-4hrft2F/Btu 4.4 x 10-5m2 C/W 0.00025 or 2.5 x 10-4hrft2F/Btu 4.4 x 10-5m2 C/W ARI Guideline E-1997 0.00025 or 2.5 x 10-4hrft2F/Btu 4.4 x 10-5m2 C/W 0.0001 or 1.0 x 10-4hrft2F/Btu 1.8 x 10-5m2 C/W Note: All test fouling resistances are assumed to be clean. AHRI GUIDELINE E-1997 6 AHRI GUIDELINE E-1997 7 TAB TYPE TO BE USED ON THE COVER TAB GUIDELINE E

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1