ImageVerifierCode 换一换
格式:PDF , 页数:44 ,大小:692.96KB ,
资源ID:429283      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-429283.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(AISC DESIGN GUIDE 3-2004 Serviceability Design Considerations for Steel Buildings (2nd Edition).pdf)为本站会员(roleaisle130)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

AISC DESIGN GUIDE 3-2004 Serviceability Design Considerations for Steel Buildings (2nd Edition).pdf

1、3Steel Design GuideServiceability DesignConsiderationsSecond Editionfor Steel Buildingscover DG3 revise.qxd 4/27/2004 8:58 AM Page 33Steel Design GuideServiceability DesignConsiderationsMICHAEL WEST AND JAMES FISHERComputerized Structural Design, Inc.Milwaukee, Wisconsinwith contributions fromLAWREN

2、CE G. GRIFFISWalter P. Moore and AssociatesAustin, TexasAMERICAN INSTITUTE OF STEEL CONSTRUCTION, INC.for Steel BuildingsSecond EditionCopyright 2003byAmerican Institute of Steel Construction, Inc.All rights reserved. This book or any part thereofmust not be reproduced in any form without thewritten

3、 permission of the publisher.The information presented in this publication has been prepared in accordance with recognizedengineering principles and is for general information only. While it is believed to be accurate,this information should not be used or relied upon for any specific application wi

4、thout com-petent professional examination and verification of its accuracy, suitability, and applicabilityby a licensed professional engineer, designer, or architect. The publication of the material con-tained herein is not intended as a representation or warranty on the part of the AmericanInstitut

5、e of Steel Construction or of any other person named herein, that this information is suit-able for any general or particular use or of freedom from infringement of any patent or patents.Anyone making use of this information assumes all liability arising from such use.Caution must be exercised when

6、relying upon other specifications and codes developed by otherbodies and incorporated by reference herein since such material may be modified or amendedfrom time to time subsequent to the printing of this edition. The Institute bears no responsi-bility for such material other than to refer to it and

7、 incorporate it by reference at the time of theinitial publication of this edition.Printed in the United States of AmericaFirst Printing: March 2004vPreface AcknowledgementsThis Design Guide is the second edition of AISC DesignGuide 3, which was originally titled Serviceability DesignConsiderations

8、for Low-Rise Buildings. The new title Ser-viceability Design Considerations for Steel Buildingsreflects the addition of information on tall buildings and thefollowing more general information:1. A review of steel building types, occupancies and ser-viceability design considerations related to each,

9、asapplicable.2. Revision to current editions of references.3. Information on ponding for roof design.4. Information on floors, including discussion regardingcambering beams and how deflection issues relate to theconstruction of concrete slabs.5. Revision of floor vibration information to follow AISC

10、Design Guide 11, Floor Vibrations Due to Human Activity(Murray and others, 1997).AISC would also like to thank the following people forassistance in the review of this Design Guide. Their com-ments and suggestions have been invaluable.Todd AlwoodHarry A. ColeCharles J. CarterCynthia J. DuncanTom Fer

11、rellLouis F. GeschwindnerJohn L. HarrisChristopher M. HewittLawrence KloiberJay W. LarsonRoberto LeonWilliam LiddyRonald L. MengCharles R. PageDavis ParsonsDavid T. RickerVictor ShneurWilliam T. SeguiEldon TippingThe authors wish to thank the Metal Building Manufactur-ers Association for its joint s

12、upport with AISC in the prepa-ration of the first edition of this Guide. viiTable of ContentsChapter 1Introduction 1Serviceability Requirements in the AISC Specification 1Storage/Warehouses 3Manufacturing3Heavy Industrial/Mill Buildings 3Mercantile/Shopping Malls4Health Care and Laboratory Facilitie

13、s 4Educational 4Office Buildings 4Parking Structures5Residential/Apartments/Hotels 5Assembly/Arenas 5Seismic Applications5Chapter 2Design Considerations Relative to Roofing7Ponding Stability7Roofing 9Membrane Roofs9Metal Roofs11Chapter 3Design Considerations Relative to Skylights13Chapter 4Design Co

14、nsiderations Relative to Cladding,Frame Deformation, and Drift 15Cladding-Structure Interaction 15Foundation-Supported Cladding for Gravity Loads15Frame-Supported Cladding at Columns 18Frame-Supported Cladding for GravityLoads Along Spandrels 19Special Considerations for Tall Buildings 19Chapter 5De

15、sign Considerations Relative to InteriorPartitions and Ceilings 21Support Deflection 21Flat and Level Floors 21Specifying Camber and Camber Tolerances22Maintaining Floor Elevation23Chapter 6Design Considerations Relative to Vibration/Acceleration 25Human Response to Vibration 25Machines and Vibratio

16、n 25Tall Building AccelerationMotion Perception 25Chapter 7Design Considerations Relative to Equipment 29Elevators 29Conveyors 29Cranes 29Mechanical Equipment 30References33AppendixSummary of Serviceability Considerations37DESIGN GUIDE 3, 2ND EDITION / SERVICEABILITY DESIGN CONSIDERATIONS FOR STEEL

17、BUILDINGS /1Serviceability is defined in the AISC Specification as “astate in which the function of a building, its appearance,maintainability, durability, and comfort of its occupants arepreserved under normal usage”. Although serviceabilityissues have always been a design consideration, changes in

18、codes and materials have added importance to these mat-ters. The shift to a limit-states basis for design is one example.Since 1986, both the AISC LRFD and AISC ASD Specifi-cations have been based upon the limit-states designapproach in which two categories of limit states are recog-nized: strength

19、limit states and serviceability limit states.Strength limit states control the safety of the structure andmust be met. Serviceability limit states define the functionalperformance of the structure and should be met. The distinction between the two categories centers on theconsequences of exceeding t

20、he limit state. The conse-quences of exceeding a strength limit may be buckling,instability, yielding, fracture, etc. These consequences arethe direct response of the structure or element to load. Ingeneral, serviceability issues are different in that theyinvolve the response of people and objects t

21、o the behaviorof the structure under load. For example, the occupants mayfeel uncomfortable if there are unacceptable deformations,drifts, or vibrations.Whether or not a structure or element has passed a limitstate is a matter of judgment. In the case of strength limits,the judgment is technical and

22、 the rules are established bybuilding codes and design specifications. In the case of ser-viceability limits, the judgments are frequently non-techni-cal. They involve the perceptions and expectations ofbuilding owners and occupants. Serviceability limits have,in general, not been codified, in part

23、because the appropri-ate or desirable limits often vary from application to appli-cation. As such, they are more a part of the contractualagreements with the owner than life-safety related. Thus, itis proper that they remain a matter of contractual agreementand not specified in the building codes.In

24、 a perfect world the distinction between strength andserviceability would disappear. There would be no prob-lems or failures of any kind. In the real world all designmethods are based upon a finite, but very small probabilityof exceedance. Because of the non-catastrophic conse-quences of exceeding a

25、 serviceability limit state, a higherprobability of exceedance is allowed by current practicethan for strength limit states.The foregoing is not intended to say that serviceabilityconcerns are unimportant. In fact, the opposite is true. Byhaving few codified standards, the designer is left to resolv

26、ethese issues in consultation with the owner to determine theappropriate or desired requirements. Serviceability problems cost more money to correct thanwould be spent preventing the problem in the design phase.Perhaps serviceability discussions with the owner shouldaddress the trade-off between the

27、 initial cost of the potentiallevel of design vs. the potential mitigation costs associatedwith a more relaxed design. Such a comparison is only pos-sible because serviceability events are by definition notsafety related. The Metal Building Manufactures Associa-tion (MBMA) in its Common Industry Pra

28、ctices (MBMA,2002) states that the customer or his or her agent must iden-tify for the metal building engineer any and all criteria sothat the metal building can be designed to be “suitable forits specific conditions of use and compatible with othermaterials used in the Metal Building System.” Never

29、theless,it also points out the requirement for the active involvementof the customer in the design stage of a structure and theneed for informed discussion of standards and levels ofbuilding performance. Likewise the AISC Code of StandardPractice (AISC, 2000) states that in those instances wherethe

30、fabricator has both design and fabrication responsibility,the owner must provide the “performance criteria for thestructural steel frame.”Numerous serviceability design criteria exist, but they arespread diversely through codes, journal articles, technicalcommittee reports, manufacturers literature,

31、 office stan-dards and the preferences of individual engineers. ThisDesign Guide gathers these criteria for use in establishingserviceability design criteria for a project.Serviceability Requirements in the AISC SpecificationThe LRFD Specification (AISC, 1999) lists five topics thatrelate to service

32、ability concerns. They are:1. camber2. expansion and contraction3. deflections, vibrations, and drift4. connection slip5. corrosionCamberCamber may or may not be a solution to a serviceabilityissue, and the authors have attempted to identify appropri-Chapter 1Introduction2 / DESIGN GUIDE 3, 2ND EDIT

33、ION / SERVICEABILITY DESIGN CONSIDERATIONS FOR STEEL BUILDINGSate and inappropriate use of camber in this Design Guide. Inmost instances, the amount of total movement is of concernrather than the relative movement from the specified floorelevation, in which case camber is not an appropriate solu-tio

34、n. There are, however, situations where camber is appro-priate, such as in places where it is possible to sight downthe under side of exposed framing.Expansion and ContractionExpansion and contraction is discussed to a limited extent.The goal of this Design Guide is to discuss those aspects ofprimar

35、y and secondary steel framing behavior as theyimpact non-structural building components. For many typesof low-rise commercial and light industrial projects, expan-sion and contraction in the limited context given above arerarely an issue. This does not mean that the topic of expan-sion and contracti

36、on is unimportant and, of course, theopposite is true. For large and/or tall structures, careful con-sideration is required to accommodate absolute and relativeexpansion and contraction of the framing and the non-struc-tural components.Connection SlipConnection slip has not been addressed explicitly

37、 in thisDesign Guide. However, it is the authors intent that the var-ious drift and deflection limits include the movements dueto connection slip. Where connection slip, or especially theeffect of accumulated connection slip in addition to flexuraland/or axial deformations, will produce movements in

38、excess of the recommended guidelines, slip-critical jointsshould be considered. Slip-critical joints are also required inspecific instances enumerated in Section 5 of the Specifica-tion for Structural Joints Using ASTM A325 or ASTM A490Bolts (RCSC, 2000). It should be noted that joints madewith snug

39、-tightened or pretensioned bolts in standard holeswill not generally result in serviceability problems for indi-vidual members or low-rise frames. Careful considerationshould be given to other situations.CorrosionCorrosion, if left unattended, can lead to impairment ofstructural capacity. Corrosion

40、is also a serviceability con-cern as it relates to the performance of non-structural ele-ments and must be addressed by proper detailing andmaintenance. The primary concerns are the control or elim-ination of staining of architectural surfaces and preventionof rust formation, especially inside assem

41、blies where it caninduce stresses due to the expansive nature of the oxidationprocess. Again, the solutions are proper detailing and main-tenance.Serviceability Requirements in ASCE 7ASCE 7-02, Minimum Design Loads for Buildings andOther Structures (ASCE, 2002) addresses serviceability inparagraph 1

42、.3.2 Serviceability as follows:“Structural systems, and members thereof, shall bedesigned to have adequate stiffness to limit deflec-tions, lateral drift, vibration, or any other deforma-tions that adversely affect the intended use andperformance of buildings and other structures.”ASCE 7-02 provides

43、 an appendix with commentary enti-tled Serviceability Considerations. While this appendix isnon-mandatory, it does draw attention to the need to con-sider five topic areas related to serviceability in the designof structures:deflection, vibration, and driftdesign for long-term deflectioncamberexpans

44、ion and contractiondurabilityThe ASCE 7 appendix introduction notes that “service-ability shall be checked using appropriate loads for the limitstate being considered.” The commentary to the Appendixprovides some suggestions with regard to loads and loadcombinations. For example, two load combinatio

45、ns are sug-gested for vertical deflections of framing members:D + LD + 0.5SThese are recommended for limit states “involving visu-ally objectionable deformations, repairable cracking orother damage to interior finishes, and other short termeffects.” For serviceability limit states “involving creep,

46、set-tlement, or other similar long-term or permanent effects,”the suggested load combination is:D + 0.5LWith regard to lateral drift, the commentary cites thecommon interstory drift limits of L/600 to L/400. The com-mentary also notes that an absolute interstory drift limit of3/8 in. (10 mm) may oft

47、en be appropriate to prevent damageto non-structural elements. This absolute limit may berelaxed if there is appropriate detailing in the non-structuralelements to accommodate greater drift. The commentaryprovides the following load combination for checkingshort-term effects:D + 0.5L + 0.7WThe reade

48、r is encouraged to refer to the appendix commen-DESIGN GUIDE 3, 2ND EDITION / SERVICEABILITY DESIGN CONSIDERATIONS FOR STEEL BUILDINGS /3tary, which provides additional insights into the issue of ser-viceability and an extensive list of references. This Guide will address the following serviceabilit

49、ydesign criteria:1. roofing2. skylights3. cladding4. interior partitions and ceilings5. vibrations6. equipmentMost of these criteria limit relative and absolute deflec-tion and, in the case of vibrations, place limits on the rangeof response and controls for the physical characteristics ofstructures and elements. Additionally, the presentation anddiscussion of a consistent loading and analysis approach isessential to these criteria. Without these three elements(load, analysis approach, and serviceability limit) a service-ability design criterion is useless.This Design Guide provides servi

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1