ImageVerifierCode 换一换
格式:PDF , 页数:26 ,大小:416.38KB ,
资源ID:430162      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-430162.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(API TR 2575-2014 Measurement of Thermally Cracked Gas (FIRST EDITION).pdf)为本站会员(王申宇)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

API TR 2575-2014 Measurement of Thermally Cracked Gas (FIRST EDITION).pdf

1、Measurement of Thermally Cracked GasAPI TECHNICAL REPORT 2575 FIRST EDITION, SEPTEMBER 2014Special NotesAPI publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.Neither API nor any o

2、f APIs employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or responsibility for any use, or the r

3、esults of such use, of any information or process disclosed in this publication. Neither API nor any of APIs employees, subcontractors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights.API publications may be used by anyone desirin

4、g to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for

5、loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict.API publications are published to facilitate the broad availability of proven, sound engineering and operating practices. These publications are not intended to

6、obviate the need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from using any other practices.Any manufacturer marking equipment or materials in

7、conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.All rights reserved. No part of t

8、his work may be reproduced, translated, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. Contact the Publisher, API Publishing Services, 1220 L Street, NW, Washington, DC 200

9、05.Copyright 2014 American Petroleum InstituteForewordNothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in

10、 the publication be construed as insuring anyone against liability for infringement of letters patent.Suggested revisions are invited and should be submitted to the Standards Department, API, 1220 L Street, NW, Washington, DC 20005, standardsapi.org.iiiContentsPage1 Scope . . . . . . . . . . . . . .

11、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Normative References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

12、 Terms, Definitions, Abbreviations, and Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1 Terms and Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13、. . 13.2 Abbreviations and Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.3 Units and Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14、 . . . . . . . . . . . . 24 Types of Gases Covered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15、. . . . . . . . . . . . . . . . . . . . . . . 36 TCG Calculation Method Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46.1 Overview of Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46.2 TCG Reference Mixture Data56.3 TCG Method Uncertainty57 General Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Reference Conditio

17、ns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58.1 Mass Density at Contract Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58.2

18、FpvReference Condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68.3 Relative Density Reference Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19、. . . . 69 TCG Method for Compressibility Factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20、. . . . . . . . . . . . . . . 69.2 TCG Virial Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Annex A (informative) Example Computation Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . .

21、 . . . . . . . . . . . . . . . . . 11Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figures1 Targeted Uncertainty for Thermally Cracked Gas Mixture . . . . . . . . . . . .

22、. . . . . . . . . . . . . . . . . . . . . . . . . . . 4A.1 Example Flow Diagram for Computing Z Using the Virial Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Tables1 Units Conversions 32 Thermally Cracked Gas Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .

23、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Illustrative Example Terms for Equation (7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Illustrative Example Terms for Equation (8) . . . . . . . . . . . . . . . . . . . . . . .

24、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9A.1 Example TCG Components and Mole Percents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13A.2 Example TCG T and P Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25、 . . . . . . . . . . . . . . . . . . . . . . . . 13A.3 Illustrative Example CalculationB Terms ( 293.15 K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14A.4 Illustrative example calculation - C terms ( 293.15 K) . . . . . . . . . . . . . . . . . . . . . . . . . . .

26、. . . . . . . . . . . . . 15vIntroductionThis document initiates improving thermally cracked gas (TCG) property calculation methods for measurement applications. It is a research report on TCG research work in progress. The methods presented here are for example illustration purposes only. They are

27、not for use at this stage in the development work. Modifications will occur to the methods presented here and to other industry methods commonly used for TCG measurement once the research work is completed. The goal is to reduce TCG custody transfer uncertainty. TCG is not a naturally occurring natu

28、ral gas mixture. It is produced as a by-product in the refining process of petroleum fluids. The principal flow measurement method used to measure TCG is orifice measurement as applied in API MPMS Ch. 14.3/AGA Report No. 3/GPA 8185. These documents reference the use of API MPMS Ch. 14.2/AGA Report N

29、o. 8/GPA 8185 for compressibility factor calculations. The assumption in the current application of API MPMS Ch. 14.3/AGA Report No. 3/GPA 8185 is that the fluid sampling, measurement, and calculations conditions are in the single gas phase region and that the fluid components are consistent with AP

30、I MPMS Ch. 14.2/AGA Report No. 8/GPA 8185. TCG mixtures contain significant quantities of olefins and hydrogen. These fluid mixtures are not natural gases and fall outside of natural gas measurement and operation practices.No reference or inference is made in API MPMS Ch. 14.2/AGA Report No. 8/GPA 8

31、185 to applying natural gas components as chemical analogs for olefinic compounds, or that high concentrations of hydrogen can be permitted in such mixtures. Nor do current industry measurement documents make statements regarding the uncertainty of such practices. Current orifice measurement standar

32、ds do not address the metering, operations, or physical properties of TCGs. Industry practice has been to substitute natural gas component analogs as a means to estimate TCG property values for custody transfer. This practice increases measurement uncertainties. In order to address the issues associ

33、ated with TCGs, API initiated a four-phase project on TCG measurement. Phase I evaluated current TCG measurement practices. The results suggested that component substitution methods produced mass density uncertainties of 0.3 % to 5 % for TCG mixtures. The uncertainty depends on operating conditions.

34、 Phase I identified experimental data gaps and the need for experimental reference data over custody transfer and common pipeline operating conditions. In order to initiate filling experimental data gaps for TCG mixture mixtures, a single gas mixture was prepared and measured during Phase II. The Ga

35、s Technology Institute (GTI) provided the experimental setup and measured data to support Phase II work. The experimental work measured gas phase measurements of density, sound speed, and capacitance for a synthetic TCG mixture over a narrow operating range. Measured data were compared to predicted

36、values from API MPMS Ch. 14.2/AGA Report No. 8/GPA 8185, NIST14-DDMIX, GERG 2004/GERG 2008, and the Soave-Redlich-Kwong equations of state. Subsequent analysis was also made using ISO 20765-2 for extended range applications. This report completes the Phase III work. The final phase, Phase IV, will o

37、btain data over a broad range of TCG operating conditions. Measured reference data for many key TCG mixtures are not available. The mixture data from the Phase IV lab work may be used to evaluate TCG mixture data and determine the applicability of various measurement equations to TCG mixtures.vii1Me

38、asurement of Thermally Cracked Gas1 ScopeThis technical report presents a method to compute the density, compressibility factor, and supercompressibility factor for thermally cracked gas (TCG) for custody transfer using orifice meters. It provides equations, parameters, computation flow diagrams, an

39、d example spreadsheet calculations. This technical report applies to TCG mixtures after treatment. See Table 2 for more information on the types of gases covered. It applies for temperature from 90 F to 120 F (305 K to 322 K) at pressures up to 300 psig (2 MPa). It is limited to a specific operating

40、 region. The method is for the single gas phase only. 2 Normative ReferencesThe following referenced documents are indispensable for the application of this document or provide additional information pertinent to mass measurement of natural gas liquids. For dated references, only the edition cited a

41、pplies. For undated references, the latest edition of the referenced document (including any amendments) applies.API Manual of Petroleum Measurement Standards (MPMS), Chapter 14.2, Compressibility Factors of Natural Gas and Other Related Hydrocarbon Gases (AGA Report No. 8 1) (GPA 8185 2)3 Terms, De

42、finitions, Abbreviations, and Symbols3.1 Terms and DefinitionsThe quantities used in the equations in this document are defined when they are used. 3.2 Abbreviations and SymbolsFor the purposes of this document, the following abbreviations and symbols apply.B second virial coefficientBmixmixture sec

43、ond virial coefficientbnconstant in Table 4C third virial coefficient Cmixmixture third virial coefficientcnconstant in Table 4d mass density (mass per unit volume)(T, P) molar density at reference condition T, PFpvsupercompressibility factorMr molar mass (molecular weight)Mr (air) molar mass of air

44、molar mass of i th component N number of components in gas mixturen number of moles of gas1American Gas Association, 400 N. Capitol Street, NW, Suite 450, Washington, DC 20001, www.aga.org.2Gas Processors Association, 6526 E. 60th Street, Tulsa, Oklahoma 74145, .Mri2 API TECHNICAL REPORT 2575P absol

45、ute pressure Pbabsolute pressure at base conditionsPdreference pressure for densityPgrreference pressure for relative densityR gas constantT absolute temperature of gasTbabsolute temperature at base conditionsTdreference temperature for densityTgrreference temperature for relative density (specific

46、gravity)V gas volumeximole fraction of component the i th in gas mixturexjmole fraction of component j in the gas mixturexkmole fraction of component j in the gas mixture molar density (mass per unit volume)(Tgr, Pgr) molar density of gas mixture at Tgr, Pgr(air, Tgr, Pgr) molar density of air at Tg

47、r, Pgrbmass density at contract reference base condition Tb, PbZ compressibility factorZbcompressibility factor at contract reference condition Tb, Pb3.3 Units and ConversionsThe units used in the basic formulation of the equations and in the associated computer subroutines are SI units.The subrouti

48、nes use the following units for the absolute temperature in kelvins (K), pressure in megapascals (MPa), and molar density in moles per cubic decimeter (mol/dm3). The value of the gas constant is 0.008314472 KJ/mol-K.Conversion factors are required for conversions to and from other units. Consistent

49、conversion factors for use with the TCG method are given in Table 1. When possible, the conversion factors given in Table 1 correspond to international standards (GPA 2172-2009 and ISO 6976). Any differences in values used in this program and later values are within the experimental uncertainty in the validation data. Hence any unit conversion changes are unlikely to affect the uncertainty of the calculations. It is recommended that any subsequent changes be ignored unless the agency promoting the change provides a detailed cost impact of the change on i

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1