1、Material, Fabrication, and Repair Considerations for Austenitic Alloys Subject to Embrittlement and Cracking in High Temperature 565 C to 760 C (1050 F to 1400 F) Refinery ServicesAPI TECHNICAL REPORT 942-B FIRST EDITION, MAY 2017EFFECTIVE DATE: NOVEMBER 1, 2017Special NotesAPI publications necessar
2、ily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.Neither API nor any of APIs employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express
3、 or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or responsibility for any use, or the results of such use, of any information or process disclosed in this publication. Neither API nor any of APIs employees, subcontra
4、ctors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights.API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; how
5、ever, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may
6、 conflict.Users of this Technical Report should not rely exclusively on the information contained in this document. Sound busi-ness, scientific, engineering, and safety judgment should be used in employing the information contained herein.All rights reserved. No part of this work may be reproduced,
7、translated, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher. Contact the Publisher, API Publishing Services, 1220 L Street, NW, Washington, DC 20005.Copyright 2017 American P
8、etroleum InstituteForewordNothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construe
9、d as insuring anyone against liability for infringement of letters patent.The verbal forms used to express the provisions in this document are as follows.Shall: As used in a standard, “shall” denotes a minimum requirement in order to conform to the standard.Should: As used in a standard, “should” de
10、notes a recommendation or that which is advised but not required in order to conform to the standard.May: As used in a standard, “may” denotes a course of action permissible within the limits of a standard.Can: As used in a standard, “can” denotes a statement of possibility or capability.This docume
11、nt was produced under API standardization procedures that ensure appropriate notification and participation in the developmental process and is designated as an API standard. Questions concerning the interpretation of the content of this publication or comments and questions concerning the procedure
12、s under which this publication was developed should be directed in writing to the Director of Standards, American Petroleum Institute, 1220 L Street, NW, Washington, DC 20005. Requests for permission to reproduce or translate all or any part of the material published herein should also be addressed
13、to the director.Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. A one-time extension of up to two years may be added to this review cycle. Status of the publication can be ascertained from the API Standards Department, telephone (202) 682-8000.
14、A catalog of API publications and materials is published annually by API, 1220 L Street, NW, Washington, DC 20005.Suggested revisions are invited and should be submitted to the Standards Department, API, 1220 L Street, NW, Washington, DC 20005, standardsapi.org.iiiContentsPage1 Technical Approach/Re
15、port Organization and Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Acronyms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Process Units. . . . . . . . .
16、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17、. . . . . 23.2 Fluid Catalytic Cracking Units (FCCUs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.3 Hydrogen/Syngas Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18、. . . . . . . . . . 143.4 Catalytic Reformers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.5 Delayed Cokers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19、. . . . . . . . . . . . . . . . . . . . . . . . . . 213.6 Hydroprocessing Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 Damage Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284.1 Metallurgical Embrittlement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284.2 Sigma Phase Embrittlement. . . . . . . . . . . . . . . . . . .
21、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294.3 Carburization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.4 Stress Relaxation Cracking (SRC). .
22、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544.5 Creep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594.6 Therma
23、l Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.7 Solidification Cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24、. . . . . . . . . . 70Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Figures1 FCCU Simplified Process Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25、 . . . . . . . . . . . . . . . . . . . . . . . . 42 Replacement of Primary (Outer Ring) and Secondary (Inner Ring) Cyclones. . . . . . . . . . . . . . . . . . . . . . . 53 Example of New Hexagonal Mesh Welded Inside a Regenerator Cyclone . . . . . . . . . . . . . . . . . . . . . . . . . 84 Large Are
26、as of Internal Hexagonal Mesh and Refractory that Failed in a Brittle Manner. . . . . . . . . . . . . . 85 Example of External Refractory that Failed After a Short Time in Service. . . . . . . . . . . . . . . . . . . . . . . . . . 96 An Example of a Mitered Joint After Removal From Service . . . . .
27、 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Creep Failure on a FCCU Regenerator Overhead Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 A Two Pass SAW Weld Was Found with Creep Cracking in the Outside Weld Bead . . . . . . . . . . .
28、. . . . . . 39 Interdendritic Creep Voids and Cracking in a Weld Cross Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1310 Hydrogen Reforming Process Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1411 Reformer Feed
29、Preheat Coil Arrangement in Units with a Preconverter . . . . . . . . . . . . . . . . . . . . . . . . . . 1512 Multiple T/C Shields Welded to an Alloy 800H Superheater Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1713 Cross Section of a Crack at the Toe of One of the TC Shiel
30、ds Showing Intergranular SRC . . . . . . . . . . 1714 Tubesheet-to-Inlet Channel Cone that Cracked in Service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1815 Cracking From the OD Was Intergranular and Was Attributed to SRC. . . . . . . . . . . . . . . . . . . . . . .
31、. . . . . 1916 Catalytic Reformer Simplified Process Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2017 Continuous Regenerating Catalytic Reformer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2018 Dela
32、yed Coker Simplified Process Flow Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2219 Stress Rupture of a Coker Heater Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2320 Carburized Tube
33、 that Cracked During Pig Decoking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2421 Carburized Tube Cross Section Showing Variations in Depth of Carburization . . . . . . . . . . . . . . . . . . . . 2522 Hydroprocessing Simplified Process Flow Diagrams for Hydr
34、otreating and Hydrocracking . . . . . . . . . 2623 Hydroprocessing Simplified Process Flow Diagram of a Hydrotreater with a Recycle Hydrogen Heater. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2624 Fe-Cr Equilibrium
35、Phase Diagram Showing Sigma at 40 % to 50 % Cr (Top Axis) . . . . . . . . . . . . . . . . . . 3325 Isothermal Section of Fe-Cr-Ni Phase Diagram at 650 C (1202 F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3426 Precipitation of Sigma Phase in Different Grades of Austenitic Stainless
36、Steel at 700 C (1292 F) . . . 35vPagevii27 Penetrant Test Showing Sigma Phase Embrittlement Cracking in Type 308H SS Butt Weld . . . . . . . . . 3628 Cross Section View of Sigma Phase in a Type 304H SS FCCU Regenerator Plenum. . . . . . . . . . . . . . . . 3729 Cold-worked Microstructure Containing
37、Higher Amounts of Sigma Phase. . . . . . . . . . . . . . . . . . . . . . . . 3830 KOH Etch Revealing the Sigma Phase, but Not the Cold Working . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3931 SEM of a Type 304H SS Cyclone After 14 Years of Operation at 716 C (1321 F), 5 % Sigma Pha
38、se. . . 4032 Metallograph of Sigma Phase in a 304H SS Cyclone After 14 Years Operation at 716 C (1321 F), 5 % Sigma Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4033 Bend Test Results of Type 304H SS with 12 % Sigma 4134 Tensile
39、Test of 304H SS with (a) 12 % Sigma at 21 C (70 F) Depicting Brittle Fracture and (b) Ductile Fracture at 716 C (1320 F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4235 Impact Properties of 304 Type Stainless Steel with 2 % and 10 % Sig
40、ma 4 . . . . . . . . . . . . . . . . . . . . . . . . 4236 Charpy V-notch Impact Test Results at Room Temperature and Service Temperature . . . . . . . . . . . . . . 4337 Temperature vs. Charpy V-notch Impact Energy of Type 347 SS Weld Metal . . . . . . . . . . . . . . . . . . . . . . 4438 Temperatur
41、e vs. Charpy V-notch Impact Energy of Type 347 SS Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . 4439 Relative Severity of Carburization in the Form of Metal Dusting for Type 304 Stainless Steel and Alloy 800. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
42、 . . . . . . . . . . . 4740 Cross Section of a Type 304H SS Regenerator Cyclone with a 3 mm (0.12 in.) Thick Carburized Layer on the ID Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4941 Microstructure at the Transition from Carburized
43、Layer (Right Side) to the Base Metal of a 304H SS Regenerator Cyclone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5042 Cross Section of a Stainless Steel Coker Heater Tube with a Brittle Crack. . . . . . . . . . . . . . . .
44、 . . . . . . . . 5043 Light Micrographs Showing Typical Carburized Structures of Nickel Alloys After Testing at 982 C (1800 F) for 55 h in 5 % H2, 5 % CO, and 5 % CH4 (Balance Argon) . . . . . . . . . . . . . . 5144 SEM View, Cr Dot Map, and Fe Dot Map of Carburized Zone Near ID of 347 SS Heater Tub
45、e . . . . . . . . . 5145 Penetrant Examination Results Showing SRC Cracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5746 SRC in an Alloy 800H Furnace Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
46、 . . 5847 Stress Rupture Curves for Several Annealed Stainless Steels (Extrapolated Data). . . . . . . . . . . . . . . . . 6148 Creep Rate Curves for Several Annealed Stainless Steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6249 Three Stages of Creep Damage . . . .
47、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6350 Neubauers Classification of Creep Damage from Observation of Replicas 70 . . . . . . . . . . . . . . . . . . . 6551 Two Types of Creep Test Samples, Tangential and Longitudinal . . .
48、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6652 DeLong Diagram for Estimating Ferrite Content in Austenitic Stainless Steels . . . . . . . . . . . . . . . . . . . . 7253 WRC Diagram Including Solidification Mode Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49、. . . . . . . 73Tables1 Process Units, Conditions, and Typical Austenitic Stainless Steel Damage Mechanisms*. . . . . . . . . . . . 32 Ferrite and Austenite Formers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 Austenitic Stainless Steel Embrittlement Phases and Stress Relaxation Cracking Susceptibility. . . . . 304 Nickel Based Alloy Embrittlement Phases and Stress Relaxation Cracking Susceptibility . . . . . . . . . . 315 Typical Compositions (wt %) of Select Alloys Shown in Figure 25 .
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1