ImageVerifierCode 换一换
格式:PDF , 页数:96 ,大小:1.54MB ,
资源ID:430955      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-430955.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ANSI ANS 6.4-2006 Nuclear Analysis and Design of Concrete Radiation Shielding for Nuclear Power Plants《核电站的混凝土辐射屏蔽的核分析和设计导则》.pdf)为本站会员(rimleave225)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ANSI ANS 6.4-2006 Nuclear Analysis and Design of Concrete Radiation Shielding for Nuclear Power Plants《核电站的混凝土辐射屏蔽的核分析和设计导则》.pdf

1、ANSI/ANS-6.4-2006nuclear analysis and designof concrete radiation shieldingfor nuclear power plantsANSI/ANS-6.4-2006This standard has been reviewed and reaffirmed with the recognition that it may reference other standards and documents that may have been superseded or withdrawn. The requirements of

2、this document will be met by using the version of the standards and documents referenced herein. It is the responsibility of the user to review each of the references and to determine whether the use of the original references or more recent versions is appropriate for the facility. Variations from

3、the standards and documents referenced in this standard should be evaluated and documented. This standard does not necessarily reflect recent industry initiatives for risk informed decision-making or a graded approach to quality assurance. Users should consider the use of these industry initiatives

4、in the application of this standard. ANSI/ANS-6.4-2006American National StandardNuclear Analysis and Design of ConcreteRadiation Shielding for Nuclear Power PlantsSecretariatAmerican Nuclear SocietyPrepared by theAmerican Nuclear SocietyStandards CommitteeWorking Group ANS-6.4Published by theAmerica

5、n Nuclear Society555 North Kensington AvenueLa Grange Park, Illinois 60526 USAApproved September 29, 2006by theAmerican National Standards Institute, Inc.AmericanNationalStandardDesignation of this document as an American National Standard attests thatthe principles of openness and due process have

6、been followed in the approvalprocedure and that a consensus of those directly and materially affected bythe standard has been achieved.This standard was developed under procedures of the Standards Committee ofthe American Nuclear Society; these procedures are accredited by the Amer-ican National Sta

7、ndards Institute, Inc., as meeting the criteria for AmericanNational Standards. The consensus committee that approved the standardwas balanced to ensure that competent, concerned, and varied interests havehad an opportunity to participate.An American National Standard is intended to aid industry, co

8、nsumers, gov-ernmental agencies, and general interest groups. Its use is entirely voluntary.The existence of an American National Standard, in and of itself, does notpreclude anyone from manufacturing, marketing, purchasing, or using prod-ucts, processes, or procedures not conforming to the standard

9、.By publication of this standard, the American Nuclear Society does not insureanyone utilizing the standard against liability allegedly arising from or afterits use. The content of this standard reflects acceptable practice at the time ofits approval and publication. Changes, if any, occurring throu

10、gh developmentsin the state of the art, may be considered at the time that the standard issubjected to periodic review. It may be reaffirmed, revised, or withdrawn atany time in accordance with established procedures. Users of this standardare cautioned to determine the validity of copies in their p

11、ossession and toestablish that they are of the latest issue.The American Nuclear Society accepts no responsibility for interpretations ofthis standard made by any individual or by any ad hoc group of individuals.Requests for interpretation should be sent to the Standards Department atSociety Headqua

12、rters. Action will be taken to provide appropriate response inaccordance with established procedures that ensure consensus on theinterpretation.Comments on this standard are encouraged and should be sent to SocietyHeadquarters.Published byAmerican Nuclear Society555 North Kensington AvenueLa Grange

13、Park, Illinois 60526 USACopyright 2006 by American Nuclear Society. All rights reserved.Any part of this standard may be quoted. Credit lines should read “Extracted fromAmerican National Standard ANSI0ANS-6.4-2006 with permission of the publisher,the American Nuclear Society.” Reproduction prohibite

14、d under copyright conventionunless written permission is granted by the American Nuclear Society.Printed in the United States of AmericaForewordThis Foreword is not a part of American National Standard “Nuclear Analysis andDesign of Concrete Radiation Shielding for Nuclear Power Plants,” ANSI0ANS-6.

15、4-2006.!The need for this standard was identified in mid-1972 by D. K. Trubey, thenchairman of SubcommitteeANS-6, Radiation Protection and Shielding. The then-existing standard, ANSI N101.6-1972, “Concrete Radiation Shields,” providedexcellent guidance on the construction of concrete radiation shiel

16、ding structuresbut contained almost no information on shielding effectiveness or analysis. Thisstandard was first issued as ANSI0ANS-6.4-1977 N403!.After ANSI0ANS-6.4-1977 was issued, two significant events occurred that led tothe decision to revise the standard: ANSI N101.6-1972 was withdrawn by AN

17、SI,and theAmerican Concrete InstituteACI!issued its standardACI 349-80, “CodeRequirements for Nuclear Safety Related Concrete Structures,” as well as theCommentary ACI 349R-80, which provided updated requirements with regard tothe construction aspects of concrete shielding structures. The withdrawal

18、 ofANSI N101.6-1972; the guidance provided by ACI 349-80; and advances in theevolution of shielding methods, data, and applications led to the revision,ANSI0ANS-6.4-1985.Since that revision effort, advances in buildup factors prompted the revisionANSI0ANS-6.4-1997. Other advances, particularly with

19、respect to transmissionand reflection of gamma rays and neutrons by concrete slabs, prompted thecurrent revision, ANSI0ANS-6.4-2006.This revised standard is meant to be a “guide to good practice” in the area ofconcrete shielding analysis and design. Recommendations are given where pos-sible, but mor

20、e often the choice of analytical methods must be left to the discre-tion of the shielding engineer as appropriate to the particular job, whether it bea conceptual design or final construction drawing.This standard was revised by Working Group ANS-6.4 of the American NuclearSociety, which had the fol

21、lowing members at the time it prepared and approvedthis standard:R. E. Faw Chair!, IndividualR. J. Donahue, Lawrence Berkeley National LaboratoryC. C. Graham, AmerenUE Callaway PlantS. J. Haynes, Sandia National LaboratoriesT. M. Lloyd, EnergySolutionsJ. D. Olson, Black the word “should” is used to

22、denote arecommendation; and the word “may” is usedto denote permission, neither a requirementnor a recommendation. To conform with thisstandard, all concrete shield analyses and de-signs shall be performed in accordance with itsrequirements, but not necessarily with itsrecommendations.2.2 Requiremen

23、ts2.2.1 Calculational methodsAny applicable method may be used by thedesigner in the analysis of shield effectiveness.The designer shall be aware, however, of anylimitations imposed by the method employed.Approximations shall be chosen such that theattenuation afforded by the concrete shield isknown

24、 to be conservative with respect to thedesign objective. Conservatism may also be in-troduced by other means, such as the sourcestrength used or the radiation design dose rateoutside the shield; the concrete shield analysisneed not necessarily be inherently conservative.2.2.2 DataSelection of materi

25、al composition, density, crosssections, albedos, or other properties shall bemade such that calculational results are con-servative with respect to the design objectivesas measured by attenuation afforded by theshield.2.2.3 Operational environmentNuclear heating shall be considered during thedetermi

26、nation of the operating temperature andwater content of a concrete primary reactorshield and of any other concrete shields thatare exposed to an incident energy flux greaterthan 1010MeV0cm2s and that will operate at atemperature of 658C or greater.2.2.4 PenetrationsAll penetration configurations in

27、concrete shieldwalls shall be shown to provide adequate at-tenuation. This requirement shall be satisfiedby one of the following:1! analysis that follows the guidance ofSec. 8.4 of this standard;2! determination that the configuration issimilar to one that is functioning properlyunder comparable con

28、ditions in an operatingnuclear facility;13! determination that the configuration issimilar to one that has been evaluated exper-imentally and found to be effective for theradiation levels under consideration;4! determination that the configuration issimilar to one that has already been shownby analy

29、sis to be effective.2.2.5 ReflectionEach applicable reflection configuration shallbe reviewed to determine its effect on the de-sign radiation levels. See Sec. 8.5.3.!2.2.6 Quality assuranceThe quality assurance requirements of Ameri-can National Standard “Quality Assurance Re-quirements for Nuclear

30、 Facility Applications,”ANSI0ASME NQA-1-2004 1#1!, Sections 3, 3S-1,and 3A-1, shall be followed. As a consequenceof these requirements, the shield designer shallreview the initial specification for concrete tobe used in shield walls and shall review anysubsequent changes to that specification. Thesh

31、ield designer shall ensure the effectivenessof the shield wall based on the reviewed con-crete specification. In addition to the qualityassurance requirements of ANSI0ASME NQA-1-2004 1#, concrete shielding designed toprotect plant personnel should be tested inaccordance with American National Standa

32、rd“Program for Testing Radiation Shields in LightWater Reactors LWR!,” ANSI0ANS-6.3.1-1987R1998!2#.2.3 Recommendations2.3.1 Calculational methodsThe following methods, listed in order of in-creasing complexity and sophistication, are suit-able for determining the effectiveness of aconcrete shield wa

33、ll: the point-kernel method;the one-dimensional 1-D!, two-dimensional 2-D!, or three-dimensional 3-D! discrete ordi-nates methods; and the Monte Carlo method,as described in Sec. 6. The following methods,listed in order of increasing complexity, aresuitable for determining the effects of a pen-etrat

34、ion in a concrete shield wall: the albedomethod, the single scatter method, and theMonte Carlo method, as described in Sec. 8.4.The following methods, listed in order of in-creasing complexity, are suitable for evaluat-ing the effects of reflection from a surface: thealbedo method, the single scatte

35、r method, andthe Monte Carlo method, as described inSecs. 8.4 and 8.5. The adequacy of the methodused should be demonstrated for typical shieldapplications rather than for each shield. Thisadequacy should be documented and may bebased on comparison with experiments, com-parison with field measuremen

36、ts, comparisonof varying levels of computational sophistica-tion, or other confirmatory comparisons.2.3.2 DataIn the analysis of a concrete primary reactorshield, a coupled neutrongamma-ray librarymay be employed, and the data library recom-mended in American National Standard “Neu-tron and Gamma-Ra

37、y Cross Sections for NuclearRadiation Protection Calculations for NuclearPower Plants,”ANSI0ANS-6.1.2-19993#, is sug-gested for use. The gamma-ray mass attenua-tion coefficients and buildup factors that aregiven inAmerican National Standard “Gamma-Ray Attenuation Coefficients and BuildupFactors for

38、Engineering Materials,”ANSI0ANS-6.4-3-1991 withdrawn 2001!4#, should beused.2!If the actual concrete density and thechemical composition are known, based on con-crete mix specifications or measurements oftest samples, they should be used. If the chem-ical composition of an ordinary concrete is notkn

39、own, the composition of Type 04 concrete asspecified in Table 1 should be used.2.3.3 Other considerationsNeutron activation of trace elements should beconsidered. Rebar reinforcing steel! should beconsidered separately from the concrete in or-der to allow determination of the sources ofsecondary gam

40、ma rays.2.3.4 DocumentationA document summarizing the shield designshould be prepared at a suitable time in thedesign evaluation. Chapter 12 of the Final Safety1!Numbers in brackets refer to corresponding numbers in Sec. 9, “References.”2!Other data contained in this standard, including the data in

41、the Appendices, may be used by the shielddesigner.American National Standard ANSI0ANS-6.4-20062Table1Typicalconcreteproperties5ConcretetypeOrdinary6#Ordinary7#MagnetiteBariteMagnetiteandsteelpunchingsLimoniteandsteelpunchingsSerpentine6#Designation0304MBAMS2LSSCompositionofmixlb0yd3!Water33037034034

42、7373Cement875550940980525AggregateSandandgravel!Sandandgravel!4900magnetiteore!4980BaSO4ore!1900magnetiteore!4800punchings!1820limoniteore!4680punchings!2030serpentine!956sand!Densityofcuredconcretetheoretical!Ing0cm32.392.353.53a3.35a4.64a4.54a2.1aInlb0ft3151b148b220a212a290a283132aElementalcomposi

43、tionofcuredconcreteg0cm3!Hinmix!0.020.0130.011a0.012a0.011a0.014a0.035aHinore!0.017Oinmix!0.1590.1030.087a0.097a0.090a0.091a1.126Oinoreandcement!0.9801.0681.0810.9460.5480.617Si0.3420.7420.0910.0350.0730.0670.460Ca0.5820.1940.2510.1680.2580.2610.150C0.1180.002Na0.0400.009Mg0.0570.0060.0330.0040.0170

44、.0070.297Al0.0850.1070.0830.0140.0480.0290.042S0.0070.0030.0050.361K0.0040.0450.0040.009Fe0.0030.0291.6760.1593.5123.420.068OtherNi:0.026,P:0.007Ti:0.192,V:0.011,Mn:0.007,Cr:0.006Ba:1.551Ti:0.074,V:0.003V:0.004Cr:0.002aConcreteinwhich50%ofthewateraddedtotheoriginalmixisretained.bMinimumacceptableden

45、sity140lb0ft3.American National Standard ANSI0ANS-6.4-20063Analysis Report FSAR! may serve in lieu of aseparate document. However, if a separate doc-ument is prepared, the guidelines of Sec. 3 ofthis standard should be followed.3 Standards of documentationDocumentation that summarizes the shield de-

46、sign, and all related calculations, shall be pre-pared at a suitable time in the evolution of theshield design for quality control purposes andfor future reference. This documentation shouldinclude sections listed in Secs. 3.1 through 3.6of this standard.3.1 Shield design approachThis section should

47、 describe the approach usedin the design of the shielding, including appro-priate discussions of those portions of the shielddesign that are based on earlier designs oroperating experience.3.2 Shield design descriptionThis section should contain a detailed descrip-tion of the shield design, includin

48、g major equip-ment locations and shielding arrangements, typeof concrete used, shielding thicknesses, majorsources of radiation to be shielded, and radia-tion zone designations throughout the plant.The results of analyses of radiation levels, withthe shielding as described, should also be pre-sented

49、 either in this section or in a separatesection as described in Sec. 3.4. A discussionshould also be included that indicates the de-sign phase e.g., conceptual phase, preliminaryphase, etc.!upon which the present shield analy-ses are based.3.3 Methods of analysisThe methods of analysis used in design ofthe shielding should be described in generalterms with appropriate discussions of com-puter programs employed. Sufficient detailshould be included to provide for a basic un-derstanding of the theory involved and thespecific applications. Examples

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1