ImageVerifierCode 换一换
格式:PDF , 页数:46 ,大小:949.84KB ,
资源ID:431598      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-431598.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ANSI ASHRAE 93-2010 Methods of Testing to Determine the Thermal Performance of Solar Collectors《太阳能集热器的热力性能测定的试验方法》.pdf)为本站会员(fuellot230)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ANSI ASHRAE 93-2010 Methods of Testing to Determine the Thermal Performance of Solar Collectors《太阳能集热器的热力性能测定的试验方法》.pdf

1、ANSI/ASHRAE Standard 93-2010 (RA 2014)(Reaffirmation of ANSI/ASHRAE Standard 93-2010)Methods of Testingto Determinethe Thermal Performanceof Solar CollectorsApproved by the ASHRAE Standards Committee on January 18, 2014; by the ASHRAE Board of Directors on January 22, 2014;and by the American Nation

2、al Standards Institute on January 23, 2014. ASHRAE Standards are scheduled to be updated on a five-year cycle; the date following the standard number is the year ofASHRAE Board of Directors approval. The latest edition of an ASHRAE Standard may be purchased on the ASHRAE website(www.ashrae.org) or f

3、rom ASHRAE Customer Service, 1791 Tullie Circle, NE, Atlanta, GA 30329-2305. E-mail:ordersashrae.org. Fax: 678-539-2129. Telephone: 404-636-8400 (worldwide) or toll free 1-800-527-4723 (for orders in US andCanada). For reprint permission, go to www.ashrae.org/permissions. 2014 ASHRAE ISSN 1041-2336S

4、PECIAL NOTEThis American National Standard (ANS) is a national voluntary consensus standard developed under the auspices of ASHRAE.Consensus is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved thisstandard as an ANS, as “substantial agre

5、ement reached by directly and materially affected interest categories. This signifies the concurrenceof more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that aneffort be made toward their resolution.” Compliance with this

6、 standard is voluntary until and unless a legal jurisdiction makes compliancemandatory through legislation.ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review.ASHRAE Standards are prepared by a Project Committee appointed

7、specifically for the purpose of writing the Standard. The ProjectCommittee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, allmust be technically qualified in the subject area of the Standard. Every effort is made to balance the concern

8、ed interests on all ProjectCommittees.The Manager of Standards of ASHRAE should be contacted for:a. interpretation of the contents of this Standard,b. participation in the next review of the Standard,c. offering constructive criticism for improving the Standard, ord. permission to reprint portions o

9、f the Standard.DISCLAIMERASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information andaccepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components,or

10、 systems tested, installed, or operated in accordance with ASHRAEs Standards or Guidelines or that any tests conducted under itsStandards or Guidelines will be nonhazardous or free from risk.ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDSASHRAE Standards and Guidelines are established to assist in

11、dustry and the public by offering a uniform method of testing for ratingpurposes,bysuggestingsafepracticesindesigningandinstallingequipment,byprovidingproperdefinitionsofthisequipment,andbyprovidingother information that may serve to guide the industry.The creation of ASHRAE Standards and Guidelines

12、 is determined by the need for them,and conformance to them is completely voluntary.In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied,that the product has been approved by ASHRAE.ASHRAE Standard Project Committ

13、ee 93CognizantTC:TC 6.7, Solar Energy UtilizationSPLS Liaison: Nadar R. Jayaraman*Denotes members of voting status when the document was approved for publicationCharles J. Cromer, Chair* James C. HugginsConstantinos A. Balaras* Sanford A. Klein*Mark Hertel* Marija S. Todorovic*ASHRAE STANDARDS COMMI

14、TTEE 20132014William F. Walter, Chair David R. Conover Malcolm D. KnightRichard L. Hall, Vice-Chair John F. Dunlap Rick A. LarsonKarim Amrane James W. Earley, Jr. Mark P. ModeraJoseph R. Anderson Steven J. Emmerich Cyrus H. NasseriJames Dale Aswegan Julie M. Ferguson Janice C. PetersonCharles S. Bar

15、naby Krishnan Gowri Heather L. PlattSteven F. Bruning Cecily M. Grzywacz Douglas T. ReindlJohn A. Clark Rita M. Harrold Julia A. Keen, BOD ExOWaller S. Clements Adam W. Hinge Thomas E. Werkema, Jr., CODebra H. KennoyStephanie C. Reiniche, Manager of Standards ASHRAE (www.ashrae.org). For personal us

16、e only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAEs prior written permission.CONTENTSANSI/ASHRAE Standard 93-2010 (RA 2014),Methods ofTesting to Determine theThermal Performance of Solar CollectorsSECTION PAGEForeword.21 Pur

17、pose 22 Scope23 Definitions and Nomenclature.24 Classifications.55 Requirements56 Instrumentation.67 Apparatus and Methods of Testing78 Test Procedures and Computations129 Data to be Recorded and Test Report 1910 References19Informative Appendix ABibliography24Informative Appendix BApparent Solar Ti

18、me and Local Time at Test Site .24Informative Appendix CProcedure to Evaluate and to Correct for Header Heat Losses.25Informative Appendix DMethod for Calculating Spectrum-WeightedValues of the Transmittance-Absorptance Product26Informative Appendix ECalculating Total Daily Energy Output for the Col

19、lector.26Informative Appendix FBiaxial Incident Angle Modifiers .40Informative Appendix GAcceptance Angle Determination for Single-Axis Linear Concentrating Collector.40Informative Appendix HIncident Angle Modifier 41Informative Appendix IProcedure for Testing Solar Collectors in Which the Heat Tran

20、sfer Fluid CanChange Phase in the Absorber and the Collected Energy is Removed Via anIntegral Condenser Heat Exchanger42NOTEApproved addenda, errata, or interpretations for this standard can be downloaded free of charge from the ASHRAEWeb site at www.ashrae.org/technology. 2014 ASHRAE1791 Tullie Cir

21、cle NE Atlanta, GA 30329 www.ashrae.org All rights reserved.ASHRAE is a registered trademark of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.ANSI is a registered trademark of the American National Standards Institute. ASHRAE (www.ashrae.org). For personal use on

22、ly. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAEs prior written permission.2 ANSI/ASHRAE Standard 93-2010 (RA 2014)(This foreword is not part of this standard. It is merelyinformative and does not contain requirements necessar

23、yfor conformance to the standard. It has not been pro-cessed according to the ANSI requirements for a stan-dard and may contain material that has not been subjectto public review or a consensus process. Unresolvedobjectors on informative material are not offered theright to appeal at ASHRAE or ANSI.

24、)FOREWORDASHRAE Standard 93 provides a test procedure wherebysolar energy collectors can be tested both indoors and out-doors to rate the collectors in accordance with their thermalperformance and to determine their time constants and thevariations in their efficiency with changes in the angle of in

25、ci-dence between the suns direct rays and the normal to the col-lector aperture. The standard carefully defines its applicabilityto both liquid-cooled nonconcentrating and concentrating col-lectors and collectors that use air as the heat transfer fluid.First published in 1986, the Standard 93 was re

26、affirmedin 1991 and again in 2003. This revision of the standardbrings it into agreement with ISO Standard 9806-1. The testprocedure for performance remains the same as in previouseditions, but additional methods for calculating performanceefficiency from the recorded data have been added. Whereaspe

27、rformance was previously calculated based on gross areaand inlet fluid temperature, in this edition of the standardthree new methods of calculation are provided. Now perfor-mance can be calculated based upon (1) gross area and aver-age fluid temperature, (2) absorber area and inlet fluidtemperature,

28、 and (3) absorber area and average fluid temper-ature. In addition, the way in which the heat-capacity timeconstant is determined has also been changed to align in withISO 9806-1. In earlier editions this constant was determinedby exposing the collector to thermal stabilization, then cover-ing it. T

29、he heat capacity was found as function of how quicklythe collector cooled. In this edition, however, the collector iscovered to achieve thermal stabilization and then it is uncov-ered under exposure. The heat capacity is found as a functionof how quickly the collector heats up. Finally, various edit

30、o-rial corrections have been made, and the standards refer-ences have been updated to the most recent editions.This is a reaffirmation of Standard 93-2010. This stan-dard was prepared under the auspices of ASHRAE. It may beused, in whole or in part, by an association or governmentagency with due cre

31、dit to ASHRAE. Adherence is strictly on avoluntary basis and merely in the interests of obtaining uni-form guidelines throughout the industry.This version of thereaffirmation has no changes.1. PURPOSEThepurposeofthisstandardistoprovidetestmethodsfordetermining the thermal performance of solar energy

32、 collec-tors that use single-phase fluids and have no significant inter-nal energy storage.2. SCOPE2.1 This standard applies to nonconcentrating and concen-trating solar collectors in which a fluid enters the collectorthrough a single inlet and leaves the collector through a singleoutlet.2.1.1 Colle

33、ctors containing more than one inlet and morethan one outlet may be tested according to this standard pro-vided that the external piping or ducting can be connected soas to provide effectively a single inlet and a single outlet.2.2 The heat transfer fluid may be either a liquid or a gas butnot a mix

34、ture of the two phases.2.3 This standard contains methods for conducting testsoutdoors under natural solar irradiance and for conductingtests indoors under simulated solar irradiance.2.4 This standard provides test methods and calculationprocedures for determining steady-state and quasi-steady-state

35、 thermal performance, time, and angular response char-acteristics of solar collectors.2.5 This standard is not applicable to those collectors inwhich the thermal storage unit is an integral part of the col-lector to such an extent that the collection process and thestorage process cannot be separate

36、d for the purpose of makingmeasurements of these two processes.2.6 This standard does not apply to:(a) those unglazed solar collectors that can be tested inaccordance with ASHRAE Standard 96-1980 (RA89)1and(b) those collectors in which the heat transfer fluidchanges phase and the leaving transfer fl

37、uid containsvapor. However, a suggested test procedure is givenin Appendix I for those phase-change collectorswith an integral heat exchanger that conform to thedescriptions in Sections 2.1 and 2.2 of this standard.3. DEFINITIONS AND NOMENCLATURE3.1 Definitionsabsorber: the absorber is that part of

38、the solar collector thatreceives the incident radiation energy and transforms it intothermalenergy.Itmaypossessasurfacethroughwhichenergyis transmitted to the transfer fluid; however, the transfer fluiditself can be the absorber.absorber area: the absorber area is the total heat transfer areafrom wh

39、ich the absorbed solar irradiance heats the transferfluid or the area of the absorber medium if both transfer fluidand solid surfaces jointly perform the absorbing function.air mass: the air mass is the ratio of the mass of atmospherein the actual earth-sun path to the mass that would exist at seale

40、vel if the sun were directly overhead.angle, acceptance: the angular zone within which radiation isaccepted by the receiver of a concentrator. Radiation is said tobe accepted because radiation incident within this anglereaches the absorber after passing through the aperture. ASHRAE (www.ashrae.org).

41、 For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAEs prior written permission.ANSI/ASHRAE Standard 93-2010 (RA 2014) 3angle of incidence: the angle of incidence is the anglebetween the direct solar irradiance

42、and the normal to the aper-ture plane.apparent solar time: time based on the apparent angularmotion of the sun across the sky, with solar noon the time thesun crosses the meridian of the observer.area, aperture: the aperture area is the maximum projectedarea of a solar collector through which the un

43、concentratedsolar radiant energy is admitted.area, gross: thegrosscollectorareaisthemaximumprojectedarea of the complete collector module including integralmounting means. (Note: The “complete collector module” isthe collector unit shipped by the manufacturer for installationon a structure or in an

44、array. However, if the manufacturerrequires that additional insulation be placed in any manneralong all or any part of the perimeter (edge) of the collectormodule in order that the performance characteristics, deter-mined with the test procedures herein, will be indicative ofthosethatwouldoccurwhent

45、hecollectorispartofaninstalledsystem, the gross area will have to be adjusted. If the installedarray is specified as a one-row array, then the dimensions arethe centerline-to-centerline distance between two adjacentcollectors installed in the array times the collector height. Ifthe installed array i

46、s specified as a two-row or larger array, thegross area is determined by the horizontal and longitudinalcenterline-to-centerline distances of four adjacent collectorsinstalled in the array.)collector, concentrating: a concentrating collector is a solarcollector that uses reflectors, lenses, or other

47、 optical elementsto concentrate the radiant energy passing through an apertureonto an absorber of which the surface area is smaller than theaperture area.collector, flat-plate: a flat-plate collector is a noncon-centrating solar collector in which the absorbing surface isessentially planar.collector

48、, nonconcentrating: a nonconcentrating collector isa solar collector in which the absorber heat flux is not greaterthan the solar irradiance across the aperture area. It may ormaynotcontainopticalelementstodirecttheradiantfluxontothe absorber.concentration ratio: for purposes of this test standard,

49、theconcentration ratio of a concentrating solar collector is theratio of the aperture area to the absorber area.cover, collector: the collector cover glazing is the materialcovering the aperture to provide thermal and environmentalprotection.efficiency, instantaneous thermal: the instantaneous thermalefficiencyofasolarcollectoristheamountofenergyremovedby the transfer fluid per unit of gross collector area during thespecifiedtimeperioddividedbytheglobaltotalsolarradiationincident on the collector per unit area during the same testperiod, under steady state o

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1