ImageVerifierCode 换一换
格式:PDF , 页数:7 ,大小:163.87KB ,
资源ID:432664      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-432664.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ANSI ASTM E2709-2014 Standard Practice for Demonstrating Capability to Comply with an Acceptance Procedure.pdf)为本站会员(rimleave225)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ANSI ASTM E2709-2014 Standard Practice for Demonstrating Capability to Comply with an Acceptance Procedure.pdf

1、Designation: E2709 141An American National StandardStandard Practice forDemonstrating Capability to Comply with an AcceptanceProcedure1This standard is issued under the fixed designation E2709; the number immediately following the designation indicates the year oforiginal adoption or, in the case of

2、 revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTEEditorial corrections made throughout in March 2015.1. Scope1.1 This practice provides a general metho

3、dology for evalu-ating single-stage or multiple-stage acceptance procedureswhich involve a quality characteristic measured on a numericalscale. This methodology computes, at a prescribed confidencelevel, a lower bound on the probability of passing an accep-tance procedure, using estimates of the par

4、ameters of thedistribution of test results from a sampled population.1.2 For a prescribed lower probability bound, the method-ology can also generate an acceptance limit table, whichdefines a set of test method outcomes (for example, sampleaverages and standard deviations) that would pass the accep-

5、tance procedure at a prescribed confidence level.1.3 This approach may be used for demonstrating compli-ance with in-process, validation, or lot-release specifications.1.4 The system of units for this practice is not specified.1.5 This standard does not purport to address all of thesafety concerns,

6、if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.1.6 This international standard was developed in accor-dance with internationally recogn

7、ized principles on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:2E456 Terminology Relat

8、ing to Quality and StatisticsE2282 Guide for Defining the Test Result of a Test MethodE2586 Practice for Calculating and Using Basic Statistics3. Terminology3.1 DefinitionsSee Terminology E456 for a more exten-sive listing of terms in ASTM Committee E11 standards.3.1.1 characteristic, na property of

9、 items in a sample orpopulation which, when measured, counted or otherwiseobserved, helps to distinguish between the items. E22823.1.2 mean, nof a population, , average or expectedvalue of a characteristic in a population, of a sample X, sum ofthe observed values in a sample divided by the sample si

10、ze.E25863.1.3 multiple-stage acceptance procedure, na procedurethat involves more than one stage of sampling and testing agiven quality characteristic and one or more acceptance criteriaper stage.3.1.4 standard deviation, nof a population, , the squareroot of the average or expected value of the squ

11、ared deviationof a variable from its mean of a sample, s, the square root ofthe sum of the squared deviations of the observed values in thesample divided by the sample size minus 1. E25863.1.5 test method, na definitive procedure that produces atest result. E22823.2 Definitions of Terms Specific to

12、This Standard:3.2.1 acceptable parameter region, nthe set of values ofparameters characterizing the distribution of test results forwhich the probability of passing the acceptance procedure isgreater than a prescribed lower bound.3.2.2 acceptance region, nthe set of values of parameterestimates that

13、 will attain a prescribed lower bound on theprobability of passing an acceptance procedure at a prescribedlevel of confidence.3.2.3 acceptance limit, nthe boundary of the acceptanceregion, for example, the maximum sample standard deviationtest results for a given sample mean.1This practice is under

14、the jurisdiction of ASTM Committee E11 on Quality andStatistics and is the direct responsibility of Subcommittee E11.20 on Test MethodEvaluation and Quality Control.Current edition approved Oct. 1, 2014. Published October 2014. Originallyapproved in 2009. Last previous edition approved in 2012 as E2

15、709 12. DOI:10.1520/E2709-14E01.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International,

16、 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for theDevelopment of International Standards, Guides an

17、d Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.14. Significance and Use4.1 This practice considers inspection procedures that mayinvolve multiple-stage sampling, where at each stage one candecide to accept or to continue sampling, and the decisio

18、n toreject is deferred until the last stage.4.1.1 At each stage there are one or more acceptance criteriaon the test results; for example, limits on each individual testresult, or limits on statistics based on the sample of test results,such as the average, standard deviation, or coefficient ofvaria

19、tion (relative standard deviation).4.2 The methodology in this practice defines an acceptanceregion for a set of test results from the sampled population suchthat, at a prescribed confidence level, the probability that asample from the population will pass the acceptance procedureis greater than or

20、equal to a prespecified lower bound.4.2.1 Having test results fall in the acceptance region is notequivalent to passing the acceptance procedure, but providesassurance that a sample would pass the acceptance procedurewith a specified probability.4.2.2 This information can be used for processdemonstr

21、ation, validation of test methods, and qualification ofinstruments, processes, and materials.4.2.3 This information can be used for lot release(acceptance), but the lower bound may be conservative in somecases.4.2.4 If the results are to be applied to future test resultsfrom the same process, then i

22、t is assumed that the process isstable and predictable. If this is not the case then there can beno guarantee that the probability estimates would be validpredictions of future process performance.4.3 This methodology was originally developed (1-4)3foruse in two specific quality characteristics of d

23、rug products inthe pharmaceutical industry but will be applicable for accep-tance procedures in all industries.4.4 Mathematical derivations would be required that arespecific to the individual criteria of each test.5. Methodology5.1 The process for defining the acceptance limits, startingfrom the de

24、finition of the acceptance procedure, is outlined inthis section. A computer program is normally required toproduce the acceptable parameter region and the acceptancelimits.5.1.1 An expression for the exact probability of passing theacceptance procedure might be intractable when the procedureconsist

25、s of multiple stages with multiple criteria, hence a lowerbound for the probability may be used.5.2 Express the probability of passing the acceptance pro-cedure as a function of the parameters characterizing thedistribution of the quality characteristic for items in thesampled population.5.2.1 For e

26、ach stage in the procedure having multipleacceptance criteria, determine the lower bound on the prob-ability of that stage as a function of the probabilities of passingeach of the criteria in the stage:PSi! 5 PCi1and Ci2 and Cim! $1 2(j51m1 2 PCij! (1)where:P(Si) = is the probability of passing stag

27、e i,P(Cij) = is the probability of passing the j-th criterion of mwithin the i-th stage.5.2.2 Determine the lower bound on the probability ofpassing a k-stage procedure as a function of probabilities ofpassing each of the individual stages:P pass k 2 stage procedure! $max$PS1!, PS2!, , PSk!% (2)5.3

28、Determine the contour of the region of parameter valuesfor which the expression for the probability of passing thegiven acceptance procedure is at least equal to the requiredlower bound (LB) on the probability of acceptance (p). Thisdefines the acceptable parameter region.5.4 For each value of a sta

29、tistic or set of statistics, derive ajoint confidence region for the distribution parameters atconfidence level, expressed as a percentage, of 100(1-). Thesize of sample to be taken, n, and the statistics to be used, mustbe predetermined (see 5.6).5.5 Determine the contour of the acceptance region,

30、whichconsists of values of the statistics for which the confidenceregion at level 100(1-) is entirely contained in the acceptableparameter region. The acceptance limits lie on the contour ofthe acceptance region.5.6 To select the size of sample, n, to be taken, theprobability that sample statistics

31、will lie within acceptancelimits should be evaluated over a range of values of n, forvalues of population parameters of practical interest, and forwhich probabilities of passing the given acceptance procedureare well above the lower bound. The larger the sample size nthat is chosen, the larger will

32、be the acceptance region and thetighter the distribution of the statistics. Choose n so that theprobability of passing acceptance limits is greater than apredetermined value.5.7 To use the acceptance limit, sample randomly from thepopulation. Compute statistics for the sample. If statistics fallwith

33、in the acceptance limits, then there is 1- confidence thatthe probability of acceptance is at least p.6. Procedures for Sampling from a Normal Distribution6.1 An important class of procedures is for the case wherethe quality characteristic is normally distributed. Particularinstructions for that cas

34、e are given in this section, for twosampling methods, simple random and two-stage. In thisstandard these sampling methods are denoted Sampling Plan 1and Sampling Plan 2, respectively.6.2 When the characteristic is normally distributed, param-eters are the mean () and standard deviation ()ofthepopula

35、tion. The acceptable parameter region will be the regionunder a curve in the half-plane where is on the horizontalaxis, on the vertical axis, such as that depicted in Fig. 1.3The boldface numbers in parentheses refer to a list of references at the end ofthis standard.E2709 14126.3 For simple random

36、sampling from a normal population,the method of Lindgren (5) constructs a simultaneous confi-dence region of (, ) values from the sample average Xandthe sample standard deviation s of n test results.6.3.1 Let Zpand p2denote percentiles of the standardnormal distribution and of the chi-square distrib

37、ution with n-1degrees of freedom, respectively. Given a confidence level(1-), choose and such that (1-) = (1-2)(1-). Althoughthere are many choices for and that would satisfy thisequation, a reasonable choice is: 512=12 and512=12!/2 which equally splits the overall alpha be-tween estimating and . Th

38、en:PHSX2 /=nD2# Z122JPHn 2 1!s22$ 2J5 1 2 2!1 2 !5 1 2 (3)6.3.2 The confidence region for (, ), two-sided for ,one-sided for , is an inverted triangle with a minimum vertexat X,0!, as depicted in Fig. 1.6.3.3 The acceptance limit takes the form of a table giving,for each value of the sample mean, th

39、e maximum value of thestandard deviation (or coefficient of variation) that would meetthese requirements. Using a computer program that calculatesconfidence limits for and given sample mean Xandstandard deviation s, the acceptance limit can be derived usingan iterative loop over increasing values of

40、 the sample standarddeviation s (starting with s = 0) until the confidence limits hitthe boundary of the acceptable parameter region, for eachpotential value of the sample mean.6.4 For two-stage sampling, the population is divided intoprimary sampling units (locations). Llocations are selected andfr

41、om each of them a subsample of n items is taken. Thevariance of a single observation, 2, is the sum of between-location and within-location variances.6.4.1 A confidence limit for 2is given by Graybill andWang (6) using the between and within location mean squaresfrom analysis of variance. When there

42、 are L locations withsubsamples of n items, the mean squares between locations andwithin locations, MSLand MSE, have L-1 and L(n-1) degreesof freedom respectively. Express the overall confidence levelas a product of confidence levels for the population mean andstandard deviation as in 6.3, so that (

43、1-) = (1-2)(1-). Anupper (1-) confidence limit for 2is:1/n! MSL11 2 1/n! MSE#1$1/n! (4)L 2 1!/L21, 1222 1!MSL#211 2 1/n!Ln 2 1!/Ln21!,1222 1!MSE#2%1/2The upper (1-) confidence limit for is the square root ofEq 4. Two sided (1-2) confidence limits for are:X6Z12=nL!(5)6.4.2 To verify, at confidence le

44、vel 1-, that a sample willpass the original acceptance procedure with probability at leastequal to the prespecified lower bound, values of (, ) definedFIG. 1 Example of Acceptance Limit Contour Showing a Simultaneous Confidence Interval With 95 % and 99 % Lower Bound ContoursE2709 1413by the limits

45、given in Eq 4 and Eq 5 should fall within theacceptable parameter region defined in 5.3.6.4.3 An acceptance limit table is constructed by fixing thesample within location standard deviation and the standarddeviation of location means and then finding the range ofoverall sample means such that the co

46、nfidence interval com-pletely falls below the pre-specified lower bound.7. Examples7.1 An example of an evaluation of a single-stage lotacceptance procedure is given in Appendix X1. An acceptancelimit table is shown for a sample size of 30, but other samplesizes may be considered.7.2 An example of a

47、n evaluation of a two-stage lot accep-tance procedure with one or more acceptance criterion at eachstage is given in Appendix X2. An acceptance limit table isshown for a sample size of 30.7.3 An example of an evaluation of a two-stage lot accep-tance procedure with one or more acceptance criteria at

48、 eachstage using Sampling Plan 2 is given in Appendix X3.Anacceptance limit table is shown for a sample size of 4 taken ateach of 15 locations for a total of 60 units tested.8. Keywords8.1 acceptance limits; joint confidence regions; multiple-stage acceptance procedures; specificationsAPPENDIXES(Non

49、mandatory Information)X1. EXAMPLE: EVALUATION OF A SINGLE STAGE ACCEPTANCE PROCEDUREX1.1 A single-stage lot acceptance procedure is stated asfollows: Sample five units at random from the lot and measurea numerical quality characteristic (Xi) of each unit. Criterion:Pass if all 5 individual units are between 95 and 105;otherwise, fail.X1.2 Assume that the test results follow a normal distribu-tion with mean and standard deviation . Let Z denote thestandard

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1