ImageVerifierCode 换一换
格式:PDF , 页数:38 ,大小:184.88KB ,
资源ID:434928      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-434928.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ANSI ICEA S-81-570-2012 600 VOLT RATED CABLES OF RUGGEDIZED DESIGN FOR DIRECT BURIAL INSTALLATIONS AS SINGLE CONDUCTORS OR ASSEMBLIES OF SINGLE CONDUCTORS《作为单一导体或单一导体组装件的直埋装置加固设计60.pdf)为本站会员(progressking105)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ANSI ICEA S-81-570-2012 600 VOLT RATED CABLES OF RUGGEDIZED DESIGN FOR DIRECT BURIAL INSTALLATIONS AS SINGLE CONDUCTORS OR ASSEMBLIES OF SINGLE CONDUCTORS《作为单一导体或单一导体组装件的直埋装置加固设计60.pdf

1、 STANDARD FOR 600 VOLT RATED CABLES OF RUGGEDIZED DESIGN FOR DIRECT BURIAL INSTALLATIONS AS SINGLE CONDUCTORS OR ASSEMBLIES OF SINGLE CONDUCTORS Approved by AMERICAN NATIONAL STANDARDS INSTITUTE 7/19/2012 Publication # ANSI/ICEA S-81-570-2012 2012 by INSULATED CABLE ENGINEERS ASSOCIATION, Inc. ANSI/

2、ICEA S-81-570-2012 ANSI/ICEA Publication S-81-570-2012 Standard For 600 Volt Rated Cables of Ruggedized Design For Direct Burial Installation As Single Conductors Or Assemblies Of Single Conductors 7/19/2012 ANSI approval Date Prepared and Published by Insulated Cable Engineers Association P. O. Box

3、 1568 Carrollton, Georgia 30112, USA Copyright 2012 by the Insulated Cable Engineers, Incorporated. All rights including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International

4、and PanAmerican Conventions. ICEA S-81-570-2012 Page i 2012 by the Insulated Cable Engineers Association, Incorporated NOTICE AND DISCLAIMER The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the

5、 time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document. The Insulated Cable Engineers Association, Inc. (ICEA) standards and guideline publications, of which the document contained herein is o

6、ne, are developed through a voluntary consensus standards development process. This process brings together persons who have an interest in the topic covered by this publication. While ICEA administers the process and establishes rules to promote fairness in the development of consensus, it does not

7、 independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgements contained in its standards and guideline publications. ICEA disclaims liability for personal injury, property, or other damages of any nature whatsoever, whether special, indir

8、ect consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. ICEA disclaims and makes no guaranty or warranty, expressed or implied, as to the accuracy or completeness of any information published herein, and disclaims

9、and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. ICEA does not undertake to guarantee the performance of any individual manufacturer or sellers products or services by virtue of this standard or guide. In publishing and making this do

10、cument available, ICEA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is ICEA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgement or, as

11、 appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views o

12、r information not covered by this publication. ICEA has no power, nor does it undertake to police or enforce compliance with the contents of this document. ICEA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement

13、of compliance with any health or safety-related information in this document shall not be attributable to ICEA and is solely the responsibility of the certifier or maker of the statement. ICEA S-81-570-2012 Page ii 2012 by the Insulated Cable Engineers Association, Incorporated Foreword This standar

14、d publication for 600 Volt rated cables of ruggedized design for direct burial installations as single conductors and assemblies of single conductors, ICEA S-81-570 was developed by the Insulated Cable Engineers Association, Inc. (ICEA) ICEA standards and guides are adopted in the public interest an

15、d are designed to eliminate misunderstanding between the manufacturer and the user and to assist the user in selecting and obtaining the proper product for his particular need. Existence of an ICEA standard or guide does not in any respect preclude the manufacture or use of products not conforming t

16、o the standard or guide. The user of this standard is cautioned to observe any health or safety regulations and rules relative to the manufacture and use of the cable made in conformity with this standard. Request for interpretation of this standard must be submitted in writing to the Insulated Cabl

17、e Engineers Association, Inc. Box 1568, Carrollton, Georgia, 30112. An official written interpretation will be provided. Suggestions for improvements gained in the use of this standard will be welcomed by the Association. . . ICEA S-81-570-2012 Page iii 2012 by the Insulated Cable Engineers Associat

18、ion, Incorporated Contents page Foreword ii Section 1 GENERAL 1.1 SCOPE1 1.2 CONSTRUCTIONS.1 1.3 DESIGN OPTIONS .1 1.3.1 Conductors1 1.3.2 Insulation1 1.3.3 Assembly .1 1.4 OPERATING CONDITIONS .1 1.4.1 Normal Service Temperature 2 1.4.2 Emergency Overload Temperature 2 1.4.3 Short Circuit Temperatu

19、re.2 1.5 QUALIFICATION 2 1.6 TESTING.2 1.7 TEST METHODS 2 1.8 STANDARDS AND SPECIFICATIONS3 Section 2 CONDUCTOR 2.0 GENERAL.4 2.1 PHYSICAL AND ELECTRICAL PROPERTIES.4 2.1.1 Copper Conductors 4 2.1.2 Aluminum Conductors 4 2.2 CONDUCTOR SIZE UNITS 4 2.3 CONDUCTOR DC RESISTANCE PER UNIT LENGTH.5 2.3.1

20、Direct Measurement of dc Resistance per Unit Length .5 2.3.2 Calculation of dc Resistance per Unit Length 5 2.4 CONDUCTOR DIAMETER .9 Section 3 INSULATION 3.1 INSULATION 3.1.1 75 C Normal Service Operation Insulation12 3.1.2 90 C Normal Service Operation Insulation12 3.1.3 Alternate Insulation12 3.2

21、 THICKNESS AND VOLTAGE REQUIREMENTS 13 ICEA S-81-570-2012 Page iv 2012 by the Insulated Cable Engineers Association, Incorporated page 3.3 ELECTRICAL REQUIREMENTS .13 3.3.1 Insulation Resistance 13 3.3.2 Voltage Test .14 3.3.2.1 Single Conductors 14 3.3.2.2 Twisted Assemblies14 3.3.2.3 Parallel Asse

22、mblies .14 3.4 PHYSICAL REQUIREMENTS 15 Section 4 ASSEMBLIES AND IDENTIFICATION 4.1 ASSEMBLIES .16 4.2 IDENTIFICATION16 4.2.1 Conductor Identification16 4.2.2 Neutral Identification16 Section 5 TEST METHODS 5.1 TEST TEMPERATURES 17 5.2 METHODS FOR MEASURING INSULATION PHYSICAL PROPERTIES17 5.3 METHO

23、D FOR MEASURING INSULATION HOT CREEP AND HOT SET 17 5.4 METHOD FOR MEASURING THE ABSORPTION COEFFICIENT OF BLACK 75 C INSULATION WALL OUTER LAYER MATERIAL.17 5.5 METHOD OF MEASURING INSULATION HEAT DEFORMATION (DISTORTION) (THERMOPLASTIC MATERIALS 75 C RATED) 17 Section 6 QUALIFICATION TEST 6.1 SUIT

24、ABILITY OF INSULATION FOR USE ON AC CIRCUITS IN WET LOCATIONS 18 6.1.1 Qualification.18 6.1.2 Insulation Resistance Stability18 6.1.2.1 Minimum Insulation Resistance at Rated Temperature18 6.1.2.2 Maximum Rate of Decrease19 6.2 MECHANICAL ABUSE RESISTANCE OF INSULATION.19 6.2.1 Qualification .19 6.2

25、.2 Sharp Impact.19 6.2.3 Blunt Impact .20 6.2.4 Abrasion 20 6.2.5 Crush .21 6.2.6 Puncture 21 6.2.7 Scoring 21 ICEA S-81-570-2012 Page v 2012 by the Insulated Cable Engineers Association, Incorporated page 6.3 METHOD FOR DETERMINING THE RESISTANCE TO ENVIRONMENTAL STRESS CRACKING OF 75 C INSULATION

26、WALL OUTER LAYER MATERIAL .23 6.3.1 Test Specimens .23 6.3.2 Test Procedure .23 6.4 THERMAL CRACK RESISTANCE OF CABLE WITH 90C INSULATION 23 6.5 ACCELERATED ELECTRICAL REQUIREMENTS IN WATER 24 6.6 SUNLIGHT RESISTANCE OF INSULATIONS 24 6.6.1 Qualification24 6.6.2 Sunlight Resistance24 6.6.2.1 Carbon

27、Arc Weather-O-Meter25 6.6.2.2 Xenon-Arc Weather-O-Meter25 6.6.2.3 Absorption Coefficient.25 Section 7 ENGINEERING INFORMATION 7.1 FLEXURE26 7.2 INSULATION RESISTANCE CONSTANT.26 APPENDICES A CONVERSION OF ENGLISH TO METRIC 27 B RECOMMENDED BENDING RADII FOR INSULATED CONDUCTORS AND CABLE ASSEMBLIES.

28、27 C MINIMUM DRUM DIAMETERS OF REELS FOR SINGLE CONDUCTORS AND ASSEMBLIES27 D TITLE AND DATE OF INDUSTRY STANDARDS REFERENCED IN THIS DOCUMENT28 E FLEXURE TEST SET-UP .29 ICEA S-81-570-2012 Page vi 2012 by the Insulated Cable Engineers Association, Incorporated LIST OF TABLES page 1-1 Maximum Operat

29、ing Temperature .1 2-1 Schedule for Establishing Maximum Direct Current Resistance per Unit Length of Completed Cable Conductors 6 2-2 Nominal Direct Current Resistance in Ohms per 1000 ft at 25 C of Solid and Concentric Lay Stranded Conductor.7 2-2 (Metric) Nominal Direct Current Resistance in Ohms

30、 per Kilometer at 25 C of Solid and Concentric Lay Stranded Conductor.8 2-3 Nominal Diameters for Copper and Aluminum Conductors.9 2-3 (Metric) Nominal Diameters for Copper and Aluminum Conductors .10 2-4 Factors for Determining Nominal Resistance per 1000 Feet at 25 C of Stranded Conductors.11 2-5

31、Weight Increment Factors 11 3-1 Conductor Sizes, Insulation Thickness and Test Voltages 13 3-2 Insulation Physical Requirements.15 6-1 Insulation Resistance .18 6-2 Abuse Resistance Properties .22 6-3 Insulation Physical Requirements (Qualification) .23 6-4 Accelerated Electrical Requirements24 ICEA

32、 S-81-570-2012 Page 1 2012 by the Insulated Cable Engineers Association, Incorporated Section 1 GENERAL 1.1 SCOPE This standard applies to the materials, constructions, and testing of single conductor cables and assemblies of completed single conductor cables used for the distribution of electrical

33、energy at phase-to-phase voltages not exceeding 600 volts or phase to ground not exceeding 480 V, and at temperatures not exceeding 75 C or 90 C, as applicable to the construction. It requires the use of ruggedized extruded insulations to improve the resistance of the cable to certain forms of mecha

34、nical damage associated with their intended use as directly buried Secondary Distribution and Service Cables. These cables, when operated within the voltage and temperature limits stated herein, are also suitable for use in other types of installations under the conditions normally associated with t

35、hose installations. 1.2 CONSTRUCTIONS Single conductor cables and assemblies of single conductor cables shall use conductors not smaller than 8 AWG and not larger than 1,000 kcmil. The conductors of a duplex assembly shall be of the same size. When allowed, the neutral in an assembly of three cables

36、 for use in single-phase 3-wire circuits, or the neutral in an assembly of four cables, may be reduced but shall not be less than 50% of the cross-sectional area of one phase conductor. 1.3 DESIGN OPTIONS The use of this standard should recognize that it covers many options. The user should select t

37、he necessary options required for a complete description of the desired cable. 1.3.1 Conductors Metal - aluminum 1350, AA-8000 series aluminum alloy, copper. Size - 8 AWG to 1000 kcmil Conductor Stranding - See Part 2. 1.3.2 Insulation 75 C or 90 C Rated - See Part 3.1. 1.3.3 Assembly - See Part 4.1

38、. Twisted or parallel - Two or more insulated conductors without an overall covering. 1.4 OPERATING CONDITIONS The design and construction of the cable shall be such that the cable will operate satisfactorily under maximum conductor temperatures as shown in Table 1-1. Table 1-1 Maximum Operating Tem

39、perature Conductor Temperature, C Insulation Rating Normal Service Emergency Overload Short Circuit 75 75 95 150 90 90 130 250 Exception: When adequate knowledge of the thermal characteristics of a cable environment is lacking, the permissible conductor temperature should be reduced by 10 C or in ac

40、cordance with available data. ICEA S-81-570-2012 Page 2 2012 by the Insulated Cable Engineers Association, Incorporated 1.4.1 Normal Service Temperature The 75 C or 90 C “Normal Service“ temperature is the highest allowable temperature that may be attained by the hottest portion of a cable line duri

41、ng daily operating load cycles. It may be used in ampacity calculations where adequate information is known about the overall thermal characteristics of the environment to assure that the normal service temperature will not be exceeded. 1.4.2 Emergency Overload Temperature The 95 C or 130 C “Emergen

42、cy Overload“ temperatur e is the highest allowable temperature that may be attained by the hottest portion of a cable line during an emergency. Operation at that overload temperature shall not exceed 100 hours in any twelve consecutive months or 500 hours during the lifetime of the cable. 1.4.3 Shor

43、t Circuit Temperature The 150 C or 250 C “Short Circuit“ temperature is the highest allowable temperature that may be attained by an insulated conductor along any part of a cable line during a short circuit of a specified magnitude and number of cycles. (See ICEA Publication P-32-382) 1.4.4 The “Rat

44、ed Voltage“ for the purpose of this standard is 600 volts phase-to-phase. 1.5 QUALIFICATION Each manufacturer shall qualify their cable. The Qualification Tests in Part 6 and Engineering Information Tests in Part 7 are intended to demonstrate the capability of the manufacturer to furnish cables with

45、 the desired performance characteristics. Except as noted below an insulation resistance stability test, six abuse resistance tests, and a sunlight resistance test shall be made initially on cable specimens whenever an insulating material is changed. Insulations containing greater than 2.0 wt. % car

46、bon black and having an average particle diameter of 35 nm or less are not required to be sunlight resistance tested. A flexure test shall be performed for Engineering Information only. All data shall be recorded and retained. If requested, a manufacturer shall furnish copies of his qualification te

47、sts on cable specimens with the type of insulation being supplied. 1.6 TESTING All cables shall comply with the requirements given in Parts 2, 3, and 4. A program of sampling frequencies is given in ICEA Publication T-26-465/NEMA WC 54, if a frequency is not provided in this standard. 1.7 TEST METHO

48、DS When cables are tested for the requirements in Parts 2, 3, or 4, the test method shall be in accordance with ICEA Publication T-27-581/NEMA WC 53. ICEA S-81-570-2012 Page 3 2012 by the Insulated Cable Engineers Association, Incorporated 1.8 STANDARDS AND SPECIFICATIONS In this standard, units are

49、 most often expressed in the English System. To convert from an English unit to the appropriate metric unit, multiply the value of the English unit by the appropriate number from Appendix A. U.S. customary units, except for temperature, are specified throughout this standard. Approximate International System of Units (SI) equivalents are included for information only. A list of standards an

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1