ImageVerifierCode 换一换
格式:PDF , 页数:16 ,大小:843.68KB ,
资源ID:437115      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-437115.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ANSI ISO ASTM 51608-2015 Standard Practice for Dosimetry in an X-Ray (Bremsstrahlung) Facility for Radiation Processing at Energies between 50 keV and 7.5 MeV.pdf)为本站会员(brainfellow396)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ANSI ISO ASTM 51608-2015 Standard Practice for Dosimetry in an X-Ray (Bremsstrahlung) Facility for Radiation Processing at Energies between 50 keV and 7.5 MeV.pdf

1、ISO/ASTM 51608:2015(E)Standard Practice forDosimetry in an X-Ray (Bremsstrahlung) Facility forRadiation Processing at Energies between 50 keV and 7.5MeV1This standard is issued under the fixed designation ISO/ASTM 51608; the number immediately following the designation indicates theyear of original

2、adoption or, in the case of revision, the year of last revision.1. Scope1.1 This practice outlines the dosimetric procedures to befollowed during installation qualification, operationalqualification, performance qualification and routine processingat an X-ray (bremsstrahlung) irradiator. Other proce

3、duresrelated to operational qualification, performance qualificationand routine processing that may influence absorbed dose in theproduct are also discussed.NOTE 1Dosimetry is only one component of a total quality assuranceprogram for adherence to good manufacturing practices used in radiationproces

4、sing applications.NOTE 2ISO/ASTM Practices 51649, 51818 and 51702 describedosimetric procedures for electron beam and gamma facilities for radia-tion processing.1.2 For radiation sterilization of health care products, seeISO 11137-1, Sterilization of health care products Radiation Part 1: Requiremen

5、ts for development, validation androutine control of a sterilization process for medical devices.Inthose areas covered by ISO 11137-1, that standard takesprecedence.1.3 For irradiation of food, see ISO 14470, Food irradiation Requirements for development, validation and routine con-trol of the proce

6、ss of irradiation using ionizing radiation forthe treatment of food. In those areas covered by ISO 14470,that standard takes precedence.1.4 This document is one of a set of standards that providesrecommendations for properly implementing and utilizingdosimetry in radiation processing. It is intended

7、 to be read inconjunction with ISO/ASTM Practice 52628, “Practice forDosimetry in Radiation Processing”.1.5 In contrast to monoenergetic gamma radiation, theX-ray energy spectrum extends from low values (about 35keV) up to the maximum energy of the electrons incident onthe X-ray target (see Section

8、5 and Annex A1).1.6 Information about effective or regulatory dose limits andenergy limits for X-ray applications is not within the scope ofthis practice.1.7 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of t

9、his standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced documents2.1 ASTM Standards:2E170 Terminology Relating to Radiation Measurements andDosimetryE2232 Guide for Selection and Use of Mathematical Meth

10、-ods for Calculating Absorbed Dose in Radiation Process-ing ApplicationsE2303 Guide for Absorbed-Dose Mapping in RadiationProcessing Facilities2.2 ISO/ASTM Standards:251261 Practice for Calibration of Routine Dosimetry Sys-tems for Radiation Processing51539 Guide for Use of Radiation-Sensitive Indic

11、ators51649 Practice for Dosimetry in an Electron Beam Facilityfor Radiation Processing at Energies Between 300 keVand 25 MeV51702 Practice for Dosimetry in a Gamma Facility forRadiation Processing51707 Guide for Estimating Uncertainties in Dosimetry forRadiation Processing51818 Practice for Dosimetr

12、y in an Electron Beam Facilityfor Radiation Processing at Energies Between 80and 300keV52628 Practice for Dosimetry in Radiation Processing1This practice is under the jurisdiction of ASTM Committee E61 on RadiationProcessing and is the direct responsibility of Subcommittee E61.03 on DosimetryApplica

13、tion, and is also under the jurisdiction of ISO/TC 85/WG 3.Current edition approved Sept. 8, 2014. Published February 2015. Originallypublished as ASTM E 160894. Last previous ASTM edition E 160800. ASTM E160894 was adopted by ISO in 1998 with the intermediate designation ISO15567:1998(E). The prese

14、nt International Standard ISO/ASTM 51608:2015(E) is amajor revision of the last previous edition ISO/ASTM 51608:2005(E), whichreplaced ISO/ASTM 51608:2002(E).2For referenced ASTM or ISO/ASTM standards, visit the ASTM website,www.astm.org, or contact ASTM Customer Service at serviceastm.org. ForAnnua

15、l Book of ASTM Standards volume information, refer to the standardsDocument Summary page on the ASTM website. ISO/ASTM International 2017 All rights reservedThis international standard was developed in accordance with internationally recognized principles on standardization established in the Decisi

16、on on Principles for theDevelopment of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.152701 Guide for Performance Characterization of Dosim-eters and Dosimetry Systems for use in Radiation Process-ing2.3 ISO Sta

17、ndards:3ISO 11137-1 Sterilization of health care products Radia-tion Part 1: Requirements for development, validationand routine control of a sterilization process for medicaldevicesISO 14470 Food irradiation Requirements for thedevelopment, validation and routine control of the processof irradiatio

18、n using ionizing radiation for the treatment offood2.4 International Commission on Radiation Units and Mea-surements (ICRU) Reports:4ICRU Report 14 Radiation Dosimetry: X Rays and GammaRays with Maximum Photon Energies Between 0.6 and 50MeVICRU Report 34 Dosimetry of Pulsed RadiationICRU Report 35 R

19、adiation Dosimetry: Electron Beams withEnergies Between 1 and 50 MeVICRU Report 37 Stopping Powers for Electrons and Posi-tronsICRU Report 80 Dosimetry Systems for Use in RadiationProcessingICRU Report 85a Fundamental Quantities and Units forIonizing Radiation2.5 Joint Committee for Guides in Metrol

20、ogy (JCGM)Report:JCGM 100:2008, GUM 1995, with minor corrections,Evaluation of measurement dataGuide to the expressionof uncertainty in measurement53. Terminology3.1 Definitions:3.1.1 absorbed dose (D)quantity of ionizing radiationenergy imparted per unit mass of a specified material. The SIunit of

21、absorbed dose is the gray (Gy), where 1 gray isequivalent to the absorption of 1 joule per kilogram of thespecified material (1 Gy = 1 J/kg). The mathematical relation-ship is the quotient of d by dm, where d is the meanincremental energy imparted by ionizing radiation to matter ofincremental mass d

22、m (see ICRU Report 85a).D 5 d/dm (1)3.1.2 beam lengthdimension of the irradiation zone alongthe direction of product movement, at a specified distance fromthe accelerator window.3.1.2.1 DiscussionBeam length is perpendicular to beamwidth and to the electron beam axis. In case of product that isstati

23、onary during irradiation, beam length and beam widthmay be interchangeable.3.1.3 beam widthdimension of the irradiation zone per-pendicular to the direction of product movement, at a specifieddistance from the accelerator window.3.1.3.1 DiscussionFor graphic illustration, see ISO/ASTM Practice 51649

24、. This term usually applies to electronirradiation.3.1.4 bremsstrahlungbroad-spectrum electromagnetic ra-diation emitted when an energetic charged particle is influ-enced by a strong electric or magnetic field, such as that in thevicinity of an atomic nucleus.3.1.4.1 DiscussionIn radiation processin

25、g, bremsstrahl-ung photons with sufficient energy to cause ionization aregenerated by the deceleration or deflection of energetic elec-trons in a target material. When an electron passes close to anatomic nucleus, the strong coulomb field causes the electron todeviate from its original motion. This

26、interaction results in aloss of kinetic energy by the emission of electromagneticradiation. Such encounters are uncontrolled and they produce acontinuous photon energy distribution that extends up to themaximum kinetic energy of the incident electron. Thebremsstrahlung energy spectrum depends on the

27、 electronenergy, the composition and thickness of the X-ray target, andthe emission direction of photon angle of emission with respectto the incident electron.3.1.5 charged-particle equilibrium (referred to as electronequilibrium in the case of electrons set in motion by photon-beam irradiation of a

28、 material)condition in which the kineticenergy of charged particles (or electrons), excluding rest mass,entering an infinitesimal volume of the irradiated materialequals the kinetic energy of charge particles (or electrons)emerging from it.3.1.6 dose uniformity ratioratio of the maximum to theminimu

29、m absorbed dose within the irradiated product.3.1.6.1 DiscussionThe concept is also referred to as themax/min dose ratio.3.1.7 dosimeterdevice that, when irradiated, exhibits aquantifiable change that can be related to absorbed dose in agiven material using appropriate measurement instrument(s)and p

30、rocedures.3.1.8 dosimeter responsereproducible, quantifiable effectproduced in the dosimeter by ionizing radiation.3.1.9 dosimetry systemsystem used for measuring ab-sorbed dose, consisting of dosimeters, measurement instru-ments and their associated reference standards, and proceduresfor the system

31、s use.3.1.10 electron energykinetic energy of an electron.3.1.10.1 DiscussionUnit is usually electron volt (eV),kiloelectron volt (keV), or megaelectron volt (MeV). 1 eV isthe kinetic energy acquired by a single electron acceleratedthrough a potential difference of 1 V. 1 eV is equal to energy of1.6

32、02 10-19joules.3.1.11 electron energy spectrumparticle fluence distribu-tion of electrons as a function of energy.3.1.12 installation qualification (IQ)process of obtainingand documenting evidence that equipment has been providedand installed in accordance with its specifications.3Available from the

33、 International Organization for Standardization, 1 Rue deVaremb, Case Postale 56, CH1211, Geneva 20, Switzerland.4Available from the International Commission on Radiation Units andMeasurements, 7910 Woodmont Ave., Suite 800, Bethesda, MD 20814, U.S.A.5Document produced by Working Group 1 of the Join

34、t Committee for Guides inMetrology (JCGM/WG 1). Available free of charge at the BIPM website (http:/www.bipm.org).ISO/ASTM 51608:2015(E)2 ISO/ASTM International 2017 All rights reserved 3.1.13 irradiation containerholder in which product isplaced during the irradiation process.3.1.13.1 Discussion“Ir

35、radiation container” is often re-ferred to simply as “container” and can be a carrier, cart, tray,product carton, pallet, product package or other holder.3.1.14 measurement management systemset of interre-lated or interacting elements necessary to achieve metrologicalconfirmation and continual contr

36、ol of measurement processes.3.1.15 operational qualification (OQ)process of obtainingand documenting evidence that installed equipment operateswithin predetermined limits when used in accordance with itsoperational procedures.3.1.16 performance qualification (PQ)process of obtain-ing and documenting

37、 evidence that the equipment, as installedand operated in accordance with operational procedures, con-sistently performs in accordance with predetermined criteriaand thereby yields product meeting its specification.3.1.17 process loadvolume of material with a specifiedloading configuration irradiate

38、d as a single entity.3.1.18 processing categorygroup of different product thatcan be processed together.3.1.18.1 DiscussionProcessing categories can be basedon, for instance, composition, density or dose requirements.3.1.19 reference materialhomogeneous material of knownradiation absorption and scat

39、tering properties used to establishcharacteristics of the irradiation process, such as scanuniformity, depth-dose distribution, throughput rate, and repro-ducibility of dose delivery.3.1.20 simulated productmaterial with radiation attenua-tion and scattering properties similar to those of the produc

40、t,material or substance to be irradiated.3.1.20.1 DiscussionSimulated product is used during irra-diator characterization as a substitute for the actual product,material or substance to be irradiated. When used in routineproduction runs in order to compensate for the absence ofproduct, simulated pro

41、duct is sometimes referred to as com-pensating dummy. When used for absorbed-dose mapping,simulated product is sometimes referred to as phantom mate-rial.3.2 Definitions of Terms Specific to This Standard:3.2.1 X-radiationionizing electromagnetic radiation,which includes both bremsstrahlung and the

42、characteristicradiation emitted when atomic electrons make transitions tomore tightly bound states. See bremsstrahlung.3.2.1.1 DiscussionIn radiation processing applications,the principal X-radiation is bremsstrahlung.3.2.2 X-rayof or relating to X-radiation.3.2.2.1 DiscussionX-ray is used as an adj

43、ective whileX-radiation is used as a noun.3.2.3 X-ray converterdevice for generating X-radiation(bremsstrahlung) from an electron beam, consisting of a target,means for cooling the target, and a supporting structure.3.2.4 X-ray targetcomponent of the X-ray converter thatis struck by the electron bea

44、m and which produces X-radiation.3.2.4.1 DiscussionThe X-ray target is usually made ofmetal with a high atomic number (such as tantalum), highmelting temperature, and high thermal conductivity.3.3 Definitions of other terms used in this standard thatpertain to radiation measurement and dosimetry may

45、 be foundin ASTM Terminology E170. Definitions in E170 are compat-ible with ICRU Report 85a, which may be used as analternative reference.4. Significance and use4.1 A variety of products and materials are irradiated withX-radiation to modify their characteristics and improve theeconomic value or to

46、reduce their microbial population forhealth-related purposes. Dosimetry requirements might varydepending on the type and end use of the product. Someexamples of irradiation applications where dosimetry may beused are:4.1.1 Sterilization of health care products;4.1.2 Treatment of food for the purpose

47、 of parasite andpathogen control, insect disinfestation, and shelf life extension;4.1.3 Disinfection of consumer products;4.1.4 Cross-linking or degradation of polymers and elasto-mers;4.1.5 Curing composite material;4.1.6 Polymerization of monomers and oligomer and graft-ing of monomers onto polyme

48、rs;4.1.7 Enhancement of color in gemstones and other mate-rials;4.1.8 Modification of characteristics of semiconductor de-vices; and4.1.9 Research on materials effects of irradiation.NOTE 3Dosimetry with measurement traceability and with knownmeasurement uncertainty is required for regulated irradia

49、tion processes,such as the sterilization of health care products and treatment of food.Dosimetry may be less important for other industrial processes, such aspolymer modification, which can be evaluated by changes in the physicalproperties of the irradiated materials. Nevertheless, routine dosimetry maybe used to monitor the reproducibility of the radiation process.4.2 Radiation processing specifications usually include apair of absorbed-dose l

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1