ImageVerifierCode 换一换
格式:PDF , 页数:54 ,大小:1.19MB ,
资源ID:450472      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-450472.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASA S3 22-2014 American National Standard Specification of Hearing Aid Characteristics.pdf)为本站会员(postpastor181)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASA S3 22-2014 American National Standard Specification of Hearing Aid Characteristics.pdf

1、 ANSI/ASA S3.22-2014 AMERICAN NATIONAL STANDARD Specification of Hearing Aid Characteristics Accredited Standards Committee S3, Bioacoustics Standards Secretariat Acoustical Society of America 1305 Walt Whitman Road, Suite 300 Melville, NY 11747ANSI/ASAS3.22-2014 The American National Standards Inst

2、itute, Inc. (ANSI) is the national coordinator of voluntary standards development and the clearinghouse in the U.S.A. for information on national and international standards. The Acoustical Society of America (ASA) is an organization of scientists and engineers formed in 1929 to increase and diffuse

3、 the knowledge of acoustics and to promote its practical applications. ANSI/ASA S3.22-2014 (Revision of ANSI/ASA S3.22-2009) AMERICAN NATIONAL STANDARD Specification of Hearing Aid Characteristics Secretariat: Acoustical Society of America Approved on November 10, 2014, by: American National Standar

4、ds Institute, Inc. Abstract The standard describes air-conduction hearing aid measurement methods that are particularly suitable for specification and tolerance purposes. Among the test methods described are output sound pressure level (SPL) with a 90-dB input SPL, full-on gain, frequency response,

5、harmonic distortion, equivalent input noise, current drain, and induction-coil sensitivity. Specific configurations are given for measuring the input SPL to a hearing aid. Allowable tolerances in relation to values specified by the manufacturer are given for certain parameters. Annexes are provided

6、to describe an equivalent substitution method, characteristics of battery simulators, static and dynamic characteristics of automatic gain control (AGC) hearing aids, and additional tests to characterize more completely the electroacoustic performance of hearing aids. AMERICAN NATIONAL STANDARDS ON

7、ACOUSTICS The Acoustical Society of America (ASA) provides the Secretariat for Accredited Standards Committees S1 on Acoustics, S2 on Mechanical Vibration and Shock, S3 on Bioacoustics, S3/SC 1 on Animal Bioacoustics, and S12 on Noise. These committees have wide representation from the technical com

8、munity (manufacturers, consumers, trade associations, organizations with a general interest, and government representatives). The standards are published by the Acoustical Society of America as American National Standards after approval by their respective Standards Committees and the American Natio

9、nal Standards Institute (ANSI). These standards are developed and published as a public service to provide standards useful to the public, industry, and consumers, and to Federal, State, and local governments. Each of the Accredited Standards Committees (operating in accordance with procedures appro

10、ved by ANSI) is responsible for developing, voting upon, and maintaining or revising its own Standards. The ASA Standards Secretariat administers Committee organization and activity and provides liaison between the Accredited Standards Committees and ANSI. After the Standards have been produced and

11、adopted by the Accredited Standards Committees, and approved as American National Standards by ANSI, the ASA Standards Secretariat arranges for their publication and distribution. An American National Standard implies a consensus of those substantially concerned with its scope and provisions. Consen

12、sus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and obj

13、ections be considered and that a concerted effort be made towards their resolution. The use of an American National Standard is completely voluntary. Their existence does not in any respect preclude anyone, whether he or she has approved the Standards or not, from manufacturing, marketing, purchasin

14、g, or using products, processes, or procedures not conforming to the Standards. NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this

15、 Standard. Acoustical Society of America ASA Secretariat 1305 Walt Whitman Road, Suite 300 Melville, New York 11747 Telephone: 1 (631) 390-0215 Fax: 1 (631) 923-2875 E-mail: asastdsacousticalsociety.org 2014 by Acoustical Society of America. This standard may not be reproduced in whole or in part in

16、 any form for sale, promotion, or any commercial purpose, or any purpose not falling within the provisions of the U.S. Copyright Act of 1976, without prior written permission of the publisher. For permission, address a request to the Standards Secretariat of the Acoustical Society of America. 2014 A

17、coustical Society of America All rights reserved iContents 1 Scope, applications and purpose . 1 1.1 Scope 1 1.2 Applications 1 1.3 Purpose 1 2 Normative references . 1 3 Definitions . 2 3.1 Terms relating to hearing aids 2 3.2 Terms relating to test equipment and test conditions . 3 3.3 Terms relat

18、ing to measurements with acoustic inputs . 3 3.4 Terms relating to measurements with inductive inputs 4 4 Test equipment . 4 4.1 Test space 4 4.2 Measurement configuration for nondirectional hearing aids 5 4.3 Measurement configuration for directional hearing aids. 5 4.4 Sound source 6 4.5 Test sign

19、al 6 4.6 Frequency accuracy . 7 4.7 Earphone coupler . 7 4.8 The rms response . 7 4.9 Averaging time constant for noise measurement . 7 4.10 Current measurement . 7 5 Standard conditions 8 5.1 Ambient conditions . 8 5.2 Operating conditions . 8 6 Recommended measurements, specifications and toleranc

20、es 13 6.1 Curves 13 6.2 OSPL90 curve 13 6.3 HFA-OSPL90 13 6.4 Full-on gain . 14 6.5 HFA full-on gain (HFA-FOG) 14 6.6 Adjustment of the gain control to the reference test setting (RTS) 14 6.7 Reference test gain (RTG) . 14 6.8 Frequency response curve . 15 6.9 Frequency range . 15 6.10 Tolerance met

21、hod for frequency response curve . 15 6.11 Harmonic distortion . 16 6.12 Equivalent input noise level (EIN) . 17 6.13 Battery current 18 6.14 Induction coil response . 18 6.15 Interpretation of tolerances . 21 2014 Acoustical Society of America All rights reserved ii Annex A (Informative) Equivalent

22、 substitution method 22 A.1 Introduction . 22 A.2 Purpose 22 A.3 Application 22 A.4 Special equipment 22 A.5 Procedure . 22 Annex B (Informative) Recommended voltage and resistance values to be used in battery simulators . 25 B.1 Introduction . 25 B.2 Battery simulator characteristics 25 Annex C (In

23、formative) Guidelines for additional optional tests to characterize hearing aids . 26 C.1 Characteristics of the gain control 26 C.2 Characterization of battery current as a function of quiescent current and maximum current . 26 C.3 Effect of tone-control setting on frequency response . 27 C.4 Effec

24、t of output limiting control setting on OSPL90 and full-on frequency response . 27 C.5 Effect of gain control setting on frequency response . 28 C.6 Effect of power supply voltage variation on acoustic gain and OSPL90 28 C.7 Effect of power supply impedance variation on acoustic gain and OSPL90 28 C

25、.8 Hearing aid output noise spectrum . 29 C.9 AGC hearing aids . 32 C.10 Total harmonic distortion in acoustic mode as a function of input SPL 34 C.11 Total harmonic distortion in acoustic mode as a function of frequency . 35 C.12 Maximum induction coil sensitivity measurement 36 C.13 Total harmonic

26、 distortion for induction coil mode as a function of input magnetic field strength . 36 C.14 Difference frequency distortion . 37 Bibliography 40 Figures Figure 1 Measurement configuration for nondirectional hearing aids . 5 Figure 2 Measurement configuration for directional hearing aids . 6 Figure

27、3 HA-1 configuration . 9 Figure 4 HA-2 configuration . 10 Figure 5 HA-2B configuration 11 Figure 6 HA-3 configuration . 11 Figure 7 HA-4 configuration . 12 Figure 8 Example of OSPL90 and frequency response curves 14 Revision of ANSI/ASA S3.22-2009 2014 Acoustical Society of America All rights reserv

28、ed iiiFigure 9 Example of construction of tolerance template for frequency response curve 16 Figure 10 Hearing aids on TMFS for SPLITS test; BTE is shown for left ear test 18 Figure 11 Telephone magnetic field simulator 19 Figure 12 Example orientation of an ITE aid for the SPLIV test . 20 Figure 13

29、 Example orientation of a BTE aid for the SPLIV test 20 Figure A.1 Setup for measurement of sound level corrections . 23 Figure A.2 Setup for equivalent substitution method of hearing aid measurement 24 Figure C.1 Example of a test equipment noise spectrum in one-third-octave bands . 30 Figure C.2 E

30、xample of a hearing aid output noise spectrum in one-third-octave bands 30 Figure C.3 Example of acoustic gain for sinusoidal input signals at the frequencies shown, for the hearing aid used for Figure C.2 31 Figure C.4 Equivalent input noise in one-third-octave bands for the hearing aid used for Fi

31、gures C.2 and C.3 . 31 Figure C.5 Example of a steady-state input-output function illustrating compression ratio and expansion ratio 33 Figure C.6 Schematic illustration of input signal envelope (top) and output signal envelope (bottom) with attack and release time 34 Figure C.7 Two examples of tota

32、l harmonic distortion as a function of the input sound pressure level . 35 Figure C.8 Example plot of THD vs. frequency 35 Figure C.9 Example of total harmonic distortion as a function of magnetic input field strength . 36 Figure C.10 Definition of difference frequency distortion products . 38 Figur

33、e C.11 Fundamental and difference frequency distortion . 38 Figure C.12 Total difference frequency distortion . 39 Tables Table B.1 Battery simulator characteristics 25 2014 Acoustical Society of America All rights reserved iv Foreword This Foreword is for information only and is not an integral par

34、t of ANSI/ASA S3.22-2014 American National Standard Specification of Hearing Aid Characteristics. As such, this Foreword may contain material that has not been subjected to public review or a consensus process. In addition, it does not contain requirements necessary for conformance to the standard.

35、This standard comprises a part of a group of definitions, standards, and specifications for use in bioacoustics. It was developed and approved by Accredited Standards Committee S3, Bioacoustics, under its approved operating procedures. Those procedures have been accredited by the American National S

36、tandards Institute (ANSI). The Scope of Accredited Standards Committee S3 is as follows: Standards, specifications, methods of measurement and test, and terminology in the fields of psychological and physiological acoustics, including aspects of general acoustics which pertain to biological safety,

37、tolerance and comfort. The following is a list of the major non-editorial revisions to this edition of the standard: added an annex for an optional test of difference frequency distortion; moved Annex C.11 Induction Coil Performance With Loops into the main body of the standard; deleted the vertical

38、 reference angle; added a definition of a hearing aid; added graphs of attack and release time measurements to annex for Dynamic AGC characteristics; added to Annex C optional total harmonic distortion tests at more frequencies; the HA-1, HA-2, HA-3 and HA-4 coupler configurations previously defined

39、 in ANSI/ASA S3.7 have been updated and included in clause 5.2.3. New figures of these configurations have also been included. This standard is a revision of ANSI/ASA S3.22-2009, developed originally to establish measurement and specification methods for several definitive hearing aid characteristic

40、s and to provide tolerances for some of them. The original purpose of the standard was to provide a means of determining whether a production hearing aid as shipped was as stated by a manufacturer for a particular model, within the tolerances specified in the standard. In the 2009 revision of the st

41、andard, considerable effort was made to achieve harmonization with IEC 60118-7. In the 1996 revision of the standard, the gain control was set to reference test position for automatic gain control (AGC) hearing aids as has been done for all other types of hearing aids. To reduce ambiguity in specify

42、ing this procedure, and to reflect common practices in the hearing aid industry at this time, in the 2003 revision of the standard, AGC hearing aids are tested in AGC mode only for tests associated with AGC functions and are operated in non-AGC mode for all other tests. That is, for all hearing aids

43、, for measurements to determine OSPL90, full-on gain, the Reference Test Setting of the gain control (RTS), total harmonic distortion, equivalent input noise, battery current drain, and induction coil sensitivity the hearing aid is set to operate in non-AGC mode. For AGC hearing aids, tests for inpu

44、t-output characteristic and attack and release times are made with the hearing aid operating in AGC mode. In the 2009 revision of the standard, the AGC tests were moved to Annex C and provision was made to use a stationary noise signal as well a sinusoidal signal for some tests. Although intended fo

45、r the characterization of air-conduction hearing aids, the methods in this standard can be applied to other systems which have acoustic inputs and outputs, such as personal sound amplification products. 2014 Acoustical Society of America All rights reserved vAlthough the purpose of this standard is

46、quality measurements using the 2 cm3coupler, the methods described herein may also be used for design, research, or product development using the 2 cm3coupler, occluded ear simulator, or other specialized couplers or ear simulators. Additional advanced methods are found in the annexes. This standard

47、 contains several informative annexes which are not considered to be part of this standard. Since 1976, earlier versions of this standard have been incorporated into regulations of the United States Food and Drug Administration and have given guidance to manufacturers and consumers of hearing aids a

48、nd to those who serve the hearing-impaired population. At the time this Standard was submitted to Accredited Standards Committee S3, Bioacoustics for approval, the membership was as follows: C.J. Struck, Chair P. Nelson, Vice-Chair S.B. Blaeser, Secretary Acoustical Society of America . C.J. Struck

49、. P. Nelson (Alt.) American Academy of Audiology . C. Schweitzer . T. Ricketts (Alt.) American Academy of Otolaryngology, Head and Neck Surgery, Inc. .R.A. Dobie A. Kim (Alt.) American Industrial Hygiene Association T.K. Madison D. Driscoll (Alt.) American Speech-Language-Hearing Association (ASHA) . L.A. Wilber . N. DiSarno (Alt.) Beltone/GN Resound . S. Petrovic Council for Accreditation in Occupational Hearing Conservation (CAOHC) . L.D. Hager Diagnostic Group T. McColley . P. Dobrowski (Alt.) ETS

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1