ImageVerifierCode 换一换
格式:PDF , 页数:12 ,大小:442.05KB ,
资源ID:454819      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-454819.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASHRAE FUNDAMENTALS SI CH 29-2013 Refrigerants.pdf)为本站会员(bowdiet140)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASHRAE FUNDAMENTALS SI CH 29-2013 Refrigerants.pdf

1、29.1CHAPTER 29REFRIGERANTSRefrigerant Properties 29.1Refrigerant Performance 29.8Safety . 29.9Leak Detection 29.9Compatibility with Construction Materials 29.9EFRIGERANTS are the working fluids in refrigeration, air-R conditioning, and heat-pumping systems. They absorb heat fromone area, such as an

2、air-conditioned space, and reject it into another,such as outdoors, usually through evaporation and condensation,respectively. These phase changes occur both in absorption andmechanical vapor compression systems, but not in systems operatingon a gas cycle using a fluid such as air. (See Chapter 2 fo

3、r more infor-mation on refrigeration cycles.) The design of the refrigeration equip-ment depends strongly on the selected refrigerants properties. Tables1 and 2 list standard refrigerant designations, some properties, andsafety classifications from ASHRAE Standard 34.Refrigerant selection involves c

4、ompromises between conflictingdesirable thermophysical properties. A refrigerant must satisfy manyrequirements, some of which do not directly relate to its ability totransfer heat. Chemical stability under conditions of use is an essentialcharacteristic. Safety codes may require a nonflammable refri

5、gerantof low toxicity for some applications. Environmental consequences ofrefrigerant leaks must also be considered. Cost, availability, effi-ciency, compatibility with compressor lubricants and equipmentmaterials, and local and national regulations are other concerns.Latent heat of vaporization is

6、another important property. On amolar basis, fluids with similar boiling points have almost the samelatent heat. Because compressor displacement is defined on a volu-metric basis, refrigerants with similar boiling points produce similarrefrigeration effect with a given compressor. On a mass basis, l

7、atentheat varies widely among fluids. Efficiency of a theoretical vaporcompression cycle is maximized by fluids with low vapor heatcapacity. This property is associated with fluids having a simplemolecular structure and low molecular mass.Transport properties (e.g., thermal conductivity and viscosit

8、y)affect performance of heat exchangers and piping. High thermalconductivity and low viscosity are desirable.No single fluid satisfies all the attributes desired of a refrigerant;consequently, various refrigerants are used. This chapter describesthe basic characteristics of various refrigerants, and

9、 Chapter 30 liststhermophysical properties.REFRIGERANT PROPERTIESGlobal Environmental PropertiesChlorofluorocarbons (CFCs) and hydrochlorofluorocarbons(HCFCs) can affect both stratospheric ozone and climate change,whereas hydrofluorocarbons (HFCs) can affect climate change.Minimizing all refrigerant

10、 releases from systems is important notonly because of environmental impacts, but also because chargelosses lead to insufficient system charge levels, which in turn resultsin suboptimal operation and lowered efficiency.Stratospheric Ozone Depletion. The stratospheric ozone layerfilters out the UV-B

11、portion of the suns ultraviolet (UV) radiation.Overexposure to this radiation increases the risk of skin cancer,cataracts, and impaired immune systems. It also can damage sensi-tive crops, reduce crop yields, and stress marine phytoplankton (andthus human food supplies from the oceans). In addition,

12、 exposure toUV radiation degrades plastics and wood.Stratospheric ozone depletion has been linked to the presence ofchlorine and bromine in the stratosphere. Chemicals with long atmo-spheric lifetimes can migrate to the stratosphere, where the mole-cules break down from interaction with ultraviolet

13、light or throughchemical reaction. Chemicals such as CFCs and HCFCs releasechlorine, which reacts with stratospheric ozone.Ozone-depleting substances, including CFCs and HCFCs, are tobe phased out of production under the Montreal Protocol (UNEP2009). In the United States, production and importation

14、of CFCswere banned completely in 1996. HCFCs are being phased down,with complete phaseout set for 2030. In 2010, to meet the MontrealProtocol phasedown schedule, U.S. regulations banned productionand importation of HCFC-142b and HCFC-22 for use in new equip-ment. Reclaimed CFC and HCFC refrigerants

15、that meet the require-ments of AHRI Standard 700 can continue to be used for servicingexisting systems. A complete list of U.S. regulations for CFC andHCFC refrigerants, including phaseout schedules, may be found athttp:/www.epa.gov/ozone/strathome.html. Phaseout schedules forCFCs and HCFCs for both

16、 developed and developing countries aresummarized on the Ozone Secretariat web site at http:/ozone.unmfs.org/new_site/en/Treaties/control_measures_summary.php.Global Climate Change. The average global temperature isdetermined by the balance of energy from the sun heating the earthand its atmosphere

17、and of energy radiated from the earth and theatmosphere to space. Greenhouse gases (GHGs), such as CO2andwater vapor, as well as small particles trap heat at and near the sur-face, maintaining the average temperature of the Earths surfaceabout 34 K warmer than would be the case if these gases and pa

18、rti-cles were not present (the greenhouse effect).Global warming (also called global climate change) is a concernbecause of an increase in the greenhouse effect from increasing con-centrations of GHGs attributed to human activities. The major GHGof concern is CO2released to the atmosphere when fossi

19、l fuels (coal,oil, and natural gas) are burned for energy. Methane (CH4), nitrousoxide (N2O), CFCs, HCFCs, HFCs, hydrofluoroethers (HFEs), hy-drofluoroolefins (HFOs), perfluorocarbons (PFCs), nitrogen trifluor-ide (NF3), and sulfur hexafluoride (SF6) are also GHGs.In 1988, the United Nations Environ

20、ment Programme (UNEP) andthe World Meteorological Organization (WMO) established the Inter-governmental Panel on Climate Change (IPCC) to provide an objec-tive source of information about the causes of climate change, itspotential environmental and socioeconomic consequences, and theadaptation and m

21、itigation options to respond to it. According to IPCC(2007a), atmospheric concentration of carbon dioxide has increasedby more than 35% over the past 250 years, primarily from burning fos-sil fuels, with some contribution from deforestation. Concentration ofmethane has increased by over 145%, and ni

22、trous oxide by about 18%.IPCC (2007a) deems atmospheric concentrations of fluorochemicals,including fluorocarbon gases (CFCs, HCFCs, and HFCs) and sulfurThe preparation of this chapter is assigned to TC 3.1, Refrigerants andSecondary Coolants.29.2 2013 ASHRAE HandbookFundamentals (SI)Table 1 Refrige

23、rant Data and Safety ClassificationsRefrigerant Number Chemical Namea,bChemical FormulaaMolecularMassaNormal Boiling Point,aCSafetyGroupMethane Series11 Trichlorofluoromethane CCl3F 137.4 24 A112 Dichlorodifluoromethane CCl2F2120.9 30 A112B1 Bromochlorodifluoromethane CBrClF2165.4 413 Chlorotrifluor

24、omethane CClF3104.5 81 A113B1 Bromotrifluoromethane CBrF3148.9 58 A114 Tetrafluoromethane (carbon tetrafluoride) CF488.0 128 A121 Dichlorofluoromethane CHCl2F12.9 9B22 Chlorodifluoromethane CHClF286.5 41 A123 Trifluoromethane CHF370.0 82 A130 Dichloromethane (methylene chloride) CH2Cl284.9 40 B231 C

25、hlorofluoromethane CH2ClF 68.5 932 Difluoromethane (methylene fluoride) CH2F252.0 52 A2L40 Chloromethane (methyl chloride) CH3Cl 50.4 24 B241 Fluoromethane (methyl fluoride) CH3F34.7850 Methane CH416.0 161 A3Ethane Series113 1,1,2-trichloro-1,2,2-trifluoroethane CCl2FCClF2187.4 48 A1114 1,2-dichloro

26、-1,1,2,2-tetrafluoroethane CClF2CClF2170.9 4 A1115 Chloropentafluoroethane CClF2CF3154.5 39 A1116 Hexafluoroethane CF3CF3138.0 78 A1123 2,2-dichloro-1,1,1-trifluoroethane CHCl2CF3153.0 27 B1124 2-chloro-1,1,1,2-tetrafluoroethane CHClFCF3136.5 12 A1125 Pentafluoroethane CHF2CF3120.0 48 A1134a 1,1,1,2

27、-tetrafluoroethane CH2FCF3102.0 26 A1141b 1,1-dichloro-1-fluoroethane CH3CCl2F 117.0 32142b 1-chloro-1,1-difluoroethane CH3CClF2100.5 10 A2143a 1,1,1-trifluoroethane CH3CF384.0 47 A2L152a 1,1-difluoroethane CH3CHF266.0 24 A2170 Ethane CH3CH330.0 89 A3EthersE170 Dimethyl ether CH3OCH346.0 25 A3Propan

28、e Series218 Octafluoropropane CF3CF2CF3188.0 37 A1227ea 1,1,1,2,3,3,3-heptafluoropropane CF3CHFCF3170.0 16 A1236fa 1,1,1,3,3,3-hexafluoropropane CF3CH2CF3152.0 1 A1245fa 1,1,1,3,3-pentafluoropropane CF3CH2CHF2134.0 15 B1290 Propane CH3CH2CH344.0 42 A3Cyclic Organic Compounds (see Table 2 for blends)

29、C318 Octafluorocyclobutane (CF2)4 200.0 6 A1Miscellaneous Organic CompoundsHydrocarbons600 Butane CH3CH2CH2CH358.1 0 A3600a 2-methylpropane (isobutane) CH(CH3)2CH358.1 12 A3601 Pentane CH3(CH2)3CH372.15 36.1 A3601a 2-methylbutane (isopentane) (CH3)2CHCH2CH372.15 27.8 A3Oxygen Compounds610 Ethyl ethe

30、r CH3CH2OCH2CH374.1 35611 Methyl formate HCOOCH360.0 32 B2Sulfur Compounds620 (Reserved for future assignment)Nitrogen Compounds630 Methanamine (methyl amine) CH3NH231.1 7631 Ethanamine (ethyl amine) CH3CH2(NH2)45.1 17Refrigerants 29.3Inorganic Compounds702 Hydrogen H22.0 253 A3704 Helium He 4.0 269

31、 A1717 Ammonia NH317.0 33 B2L718 Water H2O18.10A1720 Neon Ne 20.2 246 A1728 Nitrogen N228.1 196 A1732 Oxygen O232.0 183740 Argon Ar 39.9 186 A1744 Carbon dioxide CO244.0 78cA1744A Nitrous oxide N2O44.090764 Sulfur dioxide SO264.1 10 B1Unsaturated Organic Compounds1150 Ethene (ethylene) CH2=CH228.1 1

32、04 A31234yf 2,3,3,3-tetrafluoro-1-propene CF3CF=CH2114.0 29.4 A2L1234ze(E) Trans-1,3,3,3-tetrafluoro-1-propene CF3CH=CHF 114.0 19.0 A2L1270 Propene (propylene) CH3CH=CH242.1 48 A3Source: ANSI/ASHRAE Standard 34-2010.aChemical name, chemical formula, molecular mass, and normal boiling point are notpa

33、rt of this standard.bPreferred chemical name is followed by the popular name in parentheses.cSublimes.Table 2 Data and Safety Classifications for Refrigerant BlendsRefrig-erant No. Composition (Mass %) Composition TolerancesMolec-ular MassaNormal Bubble Point, CNormal Dew Point, CSafety GroupZeotrop

34、es400 R-12/114 (must be specified) A1401A R-22/152a/124 (53.0/13.0/34.0) (2.0 /+0.5,1.5/1.0) 94.4 34.4 28.8 A1401B R-22/152a/124 (61.0/11.0/28.0) (2/+0.5,1.5/1.0) 92.8 35.7 30.8 A1401C R-22/152a/124 (33.0/15.0/52.0) (2/+0.5,1.5/1.0) 101 30.5 23.8 A1402A R-125/290/22 (60.0/2.0/38.0) (2.0/+0.1,1.0/2.0

35、) 101.6 49.2 47.0 A1402B R-125/290/22 (38.0/2.0/60.0) (2/+0.1,1/2) 94.7 47.2 44.9 A1403A R-290/22/218 (5.0/75.0/20.0) (+0.2,2/2/2) 92 44.0 42.3 A1403B R-290/22/218 (5.0/56.0/39.0) (+0.2,2/2/2) 103.3 43.8 42.3 A1404A R-125/143a/134a (44.0/52.0/4.0) (2/1/2) 97.6 46.6 45.8 A1405A R-22/152a/142b/C318 (4

36、5.0/7.0/5.5/42.5) (2/1/1 /2) sum of R-152a and R-142b = (+0.0, 2.0)111.9 32.9 24.5406A R-22/600a/142b (55.0/4.0/41.0) (2/1/1) 89.9 32.7 23.5 A2407A R-32/125/134a (20.0/40.0/40.0) (2/2/2) 90.1 45.2 38.7 A1407B R-32/125/134a (10.0/70.0/20.0) (2/2/2) 102.9 46.8 42.4 A1407C R-32/125/134a (23.0/25.0/52.0

37、) (2/2/2) 86.2 43.8 36.7 A1407D R-32/125/134a (15.0/15.0/70.0) (2/2/2) 91 39.4 32.7 A1407E R-32/125/134a (25.0/15.0/60.0) (2,2,2) 83.8 42.8 35.6 A1407F R-32/125/134a (30.0/30.0/40.0) (2,2,2) 82.1 46.1 39.7 A1408A R-125/143a/22 (7.0/46.0/47.0) (2/1/2) 87 45.5 45.0 A1409A R-22/124/142b (60.0/25.0/15.0

38、) (2/2/1) 97.4 35.4 27.5 A1409B R-22/124/142b (65.0/25.0/10.0) (2/2/1) 96.7 36.5 29.7 A1410A R-32/125 (50.0/50.0) (+0.5,1.5/+1.5,0.5) 72.6 51.6 51.5 A1410B R-32/125 (45.0/55.0) (1/1) 75.6 51.5 51.4 A1411A R-1270/22/152a (1.5/87.5/11.0) (+0,1/+2,0/+0,1) 82.4 39.7 37.2 A2411B R-1270/22/152a (3.0/94.0/

39、3.0) (+0,1/+2,0/+0,1) 83.1 41.6 41.3 A2412A R-22/218/142b (70.0/5.0/25.0) (2/2/1) 92.2 36.4 28.8 A2413A R-218/134a/600a (9.0/88.0/3.0) (1/2/0,1) 104 29.3 27.6 A2414A R-22/124/600a/142b (51.0/28.5/4.0/16.5) (2/2/0.5/+0.5,1) 96.9 34.0 25.8 A1414B R-22/124/600a/142b (50.0/39.0/1.5/9.5) (2/2/0.5/+0.5,1)

40、 101.6 34.4 26.1 A1415A R-22/152a (82.0/18.0) (1/1) 81.9 37.5 34.7 A2415B R-22/152a (25.0/75.0) (1/1) 70.2 27.7 26.2 A2416A R-134a/124/600 (59.0/39.5/1.5) (+0.5,1/+1,0.5/+1,0.2) 111.9 23.4 21.8 A1417A R-125/134a/600 (46.6/50.0/3.4) (1.1/1/+0.1,0.4) 106.7 38.0 32.9 A1417B R-125/134a/600 (79.0/18.3/2.

41、7) (1/1/+0.1,0.5) 113.1 44.9 41.5 A1Table 1 Refrigerant Data and Safety Classifications (Continued)Refrigerant Number Chemical Namea,bChemical FormulaaMolecularMassaNormal Boiling Point,aCSafetyGroup29.4 2013 ASHRAE HandbookFundamentals (SI)hexafluoride, to be a smaller contributor to global climate

42、 change. Onwhether observed warming is attributable to human influence, IPCC(2007b) concludes that “Most of the observed increase in global aver-aged temperatures since the mid-twentieth century about 0.65 K isvery likely 90% confident due to the observed increase in anthropo-genic greenhouse gas co

43、ncentrations.”Global Environmental Characteristics of Refrigerants. Atmo-spheric release of CFC and HCFC refrigerants (see Table 3) contributesto depletion of the ozone layer. The measure of a materials ability todeplete stratospheric ozone is its ozone depletion potential (ODP), avalue relative to

44、that of R-11, which is 1.0. It is the nonzero ODP ofthese refrigerants that led to their phaseout under the Montreal Protocol.418A R-290/22/152a (1.5/96.0/2.5) (0.5/1/0.5) 84.6 41.2 40.1 A2419A R-125/134a/E170 (77.0/19.0/4.0) (1/1/1) 109.3 42.6 36.0 A2420A R-134a/142b (88.0/12.0) (1,0/+0,1) 101.8 25

45、.0 24.2 A1421A R-125/134a (58.0/42.0) (1/1) 111.8 40.8 35.5 A1421B R-125/134a (85.0/15.0) (1/1) 116.9 45.7 42.6 A1422A R-125/134a/600a (85.1/11.5/3.4) (1/1/+0.1,0.4) 113.6 46.5 44.1 A1422B R-125/134a/600a (55.0/42.0/3.0) (1/1/+0.1,0.5) 108.5 40.5 35.6 A1422C R-125/134a/600a (82.0/15.0/3.0) (1/1/+0.1

46、,0.5) 116.3 45.3 42.3 A1422D R-125/134a/600a (65.1/31.5/3.4) (+0.9,1.1/1/+0.1,0.4) 109.9 43.2 38.4 A1423A R-134a/227ea (52.5/47.5) (1/1) 126 24.2 23.5 A1424A R-125/134a/600a/600/601a (50.5/47.0/0.9/1.0/0.6) (1/1/+0.1,0.2/+0.1,0.2/+0.1,0.2) 108.4 39.1 33.3 A1425A R-32/134a/227ea (18.5/69.5/12.0) (0.5

47、/0.5/0.5) 90.3 38.1 31.3 A1426A R-125/134a/600a/601a (5.1/93.0/1.3/0.6) (1/1/+0.1,0.2/+0.1,0.2) 101.6 28.5 26.7 A1427A R-32/125/143a/134a (15.0/25.0/10.0/50.0) (2/2/2/2) 90.4 43.0 36.3 A1428A R-125/143a/290/600a (77.5/20.0/0.6/1.9) (1/1/+0.1,0.2/+0.1,0.2) 107.5 48.3 47.5 A1429A R-E170/152a/600a (60.

48、0/10.0/30.0) (1/1/1) 50.8 26.0 25.6 A3430A R-152a/600a (76.0/24.0) (1/1) 64 27.6 27.4 A3431A R-290/152a (71.0/29.0) (1/1) 48.8 43.1 43.1 A3432A R-1270/E170 (80.0/20.0) (1/1) 42.8 46.6 45.6 A3433A R-1270/290 (30.0/70.0) (1/1) 43.5 44.6 44.2 A3433B R-1270/290 (5.0/95.0) (1/1) 44 42.7 42.5 A3433C R-1270/290 (25.0/75.0) (1/1) 43.6 44.3 43.9 A3434A R-125/143a/134a/600a (63.2/18.0/16.0/2.8) (1/1/1/+0.1,0.2) 105.7 45.0 42.3 A1435A R-E170/152a (80.0/20.0) (1/1) 49.04 26.1 25.9 A3436A R-290/600a (56.0/44.0) (1/1) 49.33 34.3 26.2 A3436B R-290/600a (52.0/4

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1