ImageVerifierCode 换一换
格式:PDF , 页数:6 ,大小:1.17MB ,
资源ID:455428      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-455428.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASHRAE LV-11-C025-2011 Unique Airflow Visualization Techniques for the Design and Validation of Above-Plenum Data Center CFD Models.pdf)为本站会员(ideacase155)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASHRAE LV-11-C025-2011 Unique Airflow Visualization Techniques for the Design and Validation of Above-Plenum Data Center CFD Models.pdf

1、 Michael Lloyd was a M.S. student in the Building Technology Program, Massachusetts Institute of Technology (MIT), Cambridge, MA. He graduated in June of 2010. Leon Glicksman is a Professor of Mechanical Engineering and Building Technology at MIT, Cambridge, MA. Unique Airflow Visualization Techniqu

2、es for the Design and Validation of Above-Plenum Data Center CFD Models Michael Lloyd Leon Glicksman, PhD Student Member ASHRAE Fellow ASHRAE ABSTRACT One cause for the substantial amount of energy used for data center cooling is poor airflow effects such as hot-aisle to cold-aisle air recirculation

3、. To correct these and to investigate innovative designs that will notably increase efficiency requires a robust, well-verified computational fluid dynamics (CFD) model. Most above-plenum data center CFD models are only validated using temperature data. Although a temperature-only validation method

4、can be useful, it does not confirm that the airflow patterns predicted by the CFD model are accurate. Since the airflow patterns above a raised-floor plenum should be confidently understood before they can be optimized, it is necessary to adopt a validation method that offers more than just a compar

5、ison of temperature data. This paper summarizes the unique validation process of a CFD model for a small data center test cell located in Cambridge, Massachusetts. The validation method features point velocity and temperature measurements and the use of small neutrally-buoyant bubbles to visualize t

6、he airflow patterns above a raised-floor plenum. The data center test cell was designed to emulate a standard hot-aisle and cold-aisle airflow configuration. The airflow visualization revealed that each perforated tile had a substantial non-uniform air velocity distribution leading to an unexpected

7、three-dimensional flow pattern above the racks. When this surprising reality was properly accounted for in the CFD boundary conditions, good agreement was found with the observed airflow patterns. It is the purpose of this paper to show the difficulties and value of utilizing more robust validation

8、techniques for data center CFD models. INTRODUCTION One report estimated that data centers in the United States account for 1.5% of the nations annual electricity consumption (Brown 2007). Another report claimed that data centers can consume up to 100 times the amount of energy per square foot than

9、a typical office building (ASHRAE 2008). Energy efficiency in data centers is extremely important because of the amount of energy they use, and one way to increase the energy efficiency in a data center is to optimize its airflow patterns. Airflow optimization is typically accomplished using a compu

10、tational fluid dynamics (CFD) model. The airflow results of data center CFD models, however, are difficult to validate. Above-plenum CFD models are usually validated using only point temperature measurements. However, temperature-only CFD validation does not confirm the accuracy of the airflow patte

11、rns. Temperature measurements in the cold-aisle can reveal the presence of recirculated air from the hot-aisle but they LV-11-C025206 ASHRAE Transactions2011. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). Published in ASHRAE Transactions, Volume 11

12、7, Part 1. For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAES prior written permission.will not indicate the recirculated airflow patterns or give any information about possible non-uniformities in the cold a

13、ir supply flow. As a result, better validation techniques are needed to properly verify the airflow patterns of CFD models. Two validation techniques are introduced in this paper: point velocity measurements and the use of neutrally-buoyant bubbles to visualize airflow patterns. The utility of these

14、 techniques was demonstrated by comparing experimental data obtained from a controlled test cell with computational data from a CFD model of the test cell. The process of using these techniques to validate the CFD model led to a surprising discovery in the test cell. The airflow in the test cell was

15、 clearly non-uniform although the high resistance of the perforated tiles is generally assumed to ensure uniform airflow, and the initial widely spread out point velocity measurements suggested only minor flow deviations. It is highly unlikely that the complex airflow patterns in the test cell would

16、 have been discovered using standard validation techniques. As a result of this discovery, the detailed boundary conditions of the CFD model were adjusted to best fit what is actually happening in the space; therefore, the CFD model was improved to be more accurate and better for airflow optimizatio

17、n. The experiment, the CFD model and the techniques used in the validation process are presented in the following sections. THE EXPERIMENT A full-size, controlled experiment in an operating data center was constructed to obtain experimental results that were compared to the results of a CFD model. F

18、igure 1 a) a photo showing the test cell, b) a schematic of the general airflow path The test cell occupied a floor area of 36 square feet, and it was designed to emulate the airflow of a standard hot-aisle / cold-aisle configured data center. It was isolated from the larger room by custom partition

19、s that went to the ceiling in order to eliminate stray air currents. The bolded lines in Figure 2 represent where the partitions were placed. These partitions were specifically designed to allow for easy and accurate measurements and observations. 2011 ASHRAE 207Figure 2 A plan-view of the test cell

20、 The room had a 6-inch (15.2 cm) raised-floor plenum and a ceiling height of 9.5 ft (2.9 m). The raised-floor plenum did not have any notable airflow obstructions, and the tiles were the standard size (2 ft by 2 ft ; 61 cm by 61 cm). Two perforated tiles emitted air into the experimental space from

21、the plenum. Each perforated tile had 2,842 holes and each hole had a diameter of 0.236 inches; therefore, the open area of each tile was 21.6 percent. However, there were structural support pieces on the back of the tiles, which further reduced the actual open area to about 15 percent. The computer

22、room air conditioner (CRAC) unit was not solely dedicated to the test cell as it supplied air for two perforated tiles located outside of the test cell. Twenty servers were used for this experimentten in each rack. The racks were standard Electronics Industry Association (EIA) enclosures that were 7

23、8 inches (2.0 m) high, 24 inches (0.61 m) wide and 30 inches (0.76 m) deep. VA Linux Systems servers were used, and each server had a height of 2U or 3.5 inches (8.9 cm). A power meter was used to determine how much heat each server at steady-state operation generated. On average, each server genera

24、ted about 75 W of heat, which is admittedly low per current industry practices. However, this study was not focused on the server inlet air temperatures or the amount of heat removed from the space. Rather, it was focused on better understanding the airflow patterns in order that they may be optimiz

25、ed to ultimately supply the servers with acceptably conditioned air. The specific server inlet air temperatures from this experiment are therefore not shared or discussed in this paper. THE CFD MODEL A CFD model of the test cell was created. The servers were modeled as open volumes with five feature

26、s: an inlet, a face to apply a pressure drop, a face to apply a heat flux, faces to apply fan conditions and an outlet. The server pressure drop was applied to a face inside the server to simulate the pressure drop through the component-packed server. Although most data center CFD models assume a fi

27、xed flow rate for each server, this model simulated the fans by applying a fan pressure-velocity relationship to five faces located along the back of the server. These fan faces were in series with the pressure drop face. The pressure drop versus flow rate was measured for one of the servers and the

28、 resulting curve fit to the data was used as the pressure drop boundary condition. Furthermore, to simulate the heat generated by the server components, a heat flux was applied to a face at the bottom of each server. The dimensions of the inlets and outlets of the server correspond to the actual are

29、as measured from the servers in the test cell. Velocity inlet boundary conditions were used to define the airflow velocity and temperature at the flow inlets. Initially, the airflow from the tiles was modeled as a uniform one-dimensional velocity. This velocity was the average of the measured readin

30、gs for each tile. After the detailed flow measurements indicated significant non-uniformities, each perforated tile was 208 ASHRAE Transactionsthen modeled as sixteen small square velocity inlet faces. The summation of the inlet face areas in the CFD model equals the open area of the perforated tile

31、s. Figure 3 An isometric-view of the CFD model. The standard k-epsilon turbulence model was used to account for the turbulent airflow. The final mesh had 1.3 million tetrahedral cells and approximately 250,000 nodes. The solution was considered converged when the solution residuals reached the defau

32、lt values of less than 0.001 for the flow equations and less than 10-7 for the energy equation. The simulations converged after about 2 hours and approximately 1,000 iterations using a computer with eight 2.66 GHz processors and 3.25 GB of RAM. THE VALIDATION PROCESS however, it was quickly discover

33、ed by taking a traverse (or array) of point velocity measurements that the airflow was non-uniform. The extent of the non-uniformity and the existence of a high speed jet-like flow were only found after the bubbles indicated there could be a high velocity region. It is highly unlikely that these pat

34、terns would have been discovered or confirmed if only temperature data or just a wide spaced velocity array were used for validation. Figure 4 is an example of an array of point velocities above the racks, which shows the non-uniform velocity pattern. Figure 4 The average velocity measurements for a

35、 traverse of points in a vertical plane above the racks. The bolded numbers are the average velocities in m/s (+ direction is from the back to the front of the racks) and the italicized numbers are the standard deviations. The non-uniform airflow was not originally predicted by the CFD model using t

36、he original boundary conditions with a uniform velocity supplied above the tiles. So, after the non-uniformity discovery, the boundary conditions of the model were changed and the model then properly predicted the airflow patterns. Neutrally-Buoyant Bubbles Neutrally-buoyant bubbles were used to vis

37、ualize the airflow patterns in the experimental space. A research-specific bubble generator was used to create the bubbles, which were capable of tracing intricate air motions. The bubbles indicated which sections of the data center test cell should be examined in more detail with a point velocity m

38、easurement array. It was obvious after observing the bubbles in the test cell that there were some high velocity regions. Time-lapse photography of the bubbles in these regions indicated a velocity much higher than the average vertical velocity. This pattern was then confirmed using an array of poin

39、t velocity measurements above the racks as seen in Figure 4. Figure 5 is a computer visualization of an airflow pattern above the racks that was first discovered through the use of bubbles. The non-uniformity above the racks was caused by the jet-like flow in one corner of the perforated tiles. 210

40、ASHRAE TransactionsFigure 5 A computer simulation of the airflow pattern that the bubbles showed. The non-uniform velocities above the tiles are due, in part, to the very small height of the raised floor. The dynamic pressure of the flow in this space is of the same order of magnitude as the pressur

41、e drop through the tiles. Although this raised floor height is well below the recommended level, similar effects can be caused by obstructions within conventional raised floors. It is recognized by the authors that the use of bubbles in an operating data center should be used with caution because th

42、e bubble film solution could potentially harm the server components. CONCLUSION A validation process that only utilizes temperature data is inadequate for accurately understanding the airflow patterns in a data center or for the verification of data center airflow patterns predicted by a CFD model.

43、To have confidence in the airflow pattern predictions of a CFD model, new airflow-focused validation techniques should be utilized. The usefulness of two airflow-focused validation techniques was introduced in this paper. Point velocity measurements and neutrally-buoyant bubbles are useful for gaini

44、ng a better understanding of velocity airflow patterns in data centers. ACKNOWLEDGMENTS The authors would like to thank the Toda Foundation for sponsoring this research, and the MIT Laboratory for Nuclear Science for graciously allowing the use of a portion of one of their data centers for the exper

45、iment. REFERENCES ASHRAE TC 9.9. Best Practices for Datacom Facility Energy Efficiency. Atlanta, GA: ASHRAE, 2008. ISBN 978-1-933742-27-4. Brown, R., Masanet, E., Nordman, B., Tschudi, W., Shehabi, A., Stanley, J., Koomey, J.,. Report to Congress on Server and Data Center Energy Efficiency. Berkeley, CA: Lawrence Berkeley National Laboratory, 2007. LBNL-363E. 2011 ASHRAE 211

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1