ImageVerifierCode 换一换
格式:PDF , 页数:8 ,大小:535.20KB ,
资源ID:455949      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-455949.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASHRAE REFRIGERATION SI CH 26-2010 MARINE REFRIGERATION《船舶制冷》.pdf)为本站会员(王申宇)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASHRAE REFRIGERATION SI CH 26-2010 MARINE REFRIGERATION《船舶制冷》.pdf

1、26.1CHAPTER 26MARINE REFRIGERATIONRefrigeration Load. 26.1Refrigeration System 26.1Cargo Holds. 26.2SHIPS REFRIGERATEDSTORES 26.4Commodities 26.5Storage Areas. 26.5Ship Refrigerated Room Design. 26.6Specific Vessels 26.6FISHING VESSELS 26.7Refrigeration System Design 26.7Refrigeration with Ice. 26.7

2、Refrigeration with Seawater. 26.8Process Freezing and Cold Storage. 26.8ARINE refrigeration systems are used aboard seagoing ves-Msels and offshore facilities and generally include cargo holdrefrigeration, domestic refrigeration services, and refrigerated con-tainers. These systems differ from stati

3、onary systems not only inphysical aspects but also in the fact that marine systems must bedesigned to handle frequent starting and stopping. Process freezingor chilling plants on vessels might run continuously for weeks, butunder some conditions may be started and stopped daily. Cold stor-ages are u

4、sually shut down after the cargo is discharged, and arerestarted before new cargo is loaded.Personnel changes of engineers and refrigeration crew membersrequire that those unfamiliar with the installation be able, on shortnotice, to trace well-labeled systems and place the plant in opera-tion or mai

5、ntain it without undue hazards to machinery, cargo, orpersonnel.Plant layout aboard ships should be as simple as possible withoutsacrificing reliability. The machinery plant should be close to themain power plant to provide short piping and power connectionsand facilitate close supervision by operat

6、ing personnel. Machineryspaceshouldbeuncrowded,evenattheexpenseofrevenuespace,togive ample room for operation, maintenance, and repair of both theapparatus and the ships structure.All machinery must have sturdy foundations, and all componentsshould be secured against vibration from either themselves

7、 or othermachinery. High-speed machinery should be mounted fore and aft,and all feeds, drains, and vessels must be installed with full consid-eration of the effects of pitch, roll, trim, and list.Refrigeration equipment should not, in general, be kept in thesame enclosed space as internal combustion

8、 engines, becauseengine damage can occur in the event of a refrigerant leak. Locatingrefrigeration equipment close to the main engine space usuallyimproves economy of space and provides easy connection to powerand cooling.REFRIGERATION LOADThis chapter does not discuss load calculations in detail, b

9、ecausethe loads that might be encountered in a marine refrigeration plantvary so widely. However, the methods used to calculate them can befound in Chapter 24, and load calculation considerations are dis-cussed in this chapter in the section on Specific Vessels.REFRIGERATION SYSTEMRefrigerantsRefrig

10、erants for shipboard use must meet the same environmen-tal regulations that apply to land-based systems. The choices aresimilar, but special attention should be given to the availability ofrefrigerants and compressor lubricants at all ports of call.CompressorsGenerally, all of the same types of comp

11、ressors used in stationaryrefrigeration plants can also be applied on ships. Chapter 37 of the2008 ASHRAE HandbookHVAC Systems and Equipment describescompressors in detail and discusses their application and control.Intermittent operation of compressors should be minimized toease the starting load b

12、urden on the vessels electrical generatingplant. Automatic capacity control should be used to react to varyingloads. Oversized compressors should be avoided.The shafts of rotating equipment are usually oriented fore and aftto minimize the gyroscopic bearing loads that occur when a vesselrolls. Compr

13、essor lubrication systems must be able to functionunder all conditions of pitch, roll, trim, and list.Reserve capacity and spare parts must be taken into account inthe design. There must be redundancy built into the system, a com-plement of spare parts to ensure the ability to maintain temperature,o

14、r some combination of the two. ANSI/ASHRAE Standard 26 listsspare parts and tools to be provided on board. Table 1 suggests re-serve capacities for various installations.Condensers and CoolersShipboard condensers are most often of shell-and-tube design,using seawater as the condensing medium. Other

15、types of condens-ers, such as plate-and-frame and double pipe, are sometimes used.Surfaces exposed to seawater must be resistant to corrosion. Cupro-nickel is the most common tube and tube sheet material for refrig-erants other than ammonia. During selection of equipment,installation, and operation,

16、 special consideration must be given topreventing damage from galvanic corrosion, erosion, electrolysis,and anaerobic corrosion. Epoxy coatings and sacrificial anodes areoften used as preventive measures.Considerations for brine (including seawater) coolers and water-cooled oil coolers or subcoolers

17、 are similar to those for condensers.Materials of construction must be compatible with the mediumbeing cooled or being used for cooling.Shell-and-tube condensers are normally fitted with dual drains inorder to drain freely under all conditions of pitch, roll, trim, or list.As an alternative, they ma

18、y be installed on an angle great enough tocompensate for the maximum angle of vessel trim or list that may beencountered.ThepreparationofthischapterisassignedtoTC10.6,TransportRefrigeration.Table1 OperatingandReserveCapacitiesofCondensingUnitsNo. of Units,100% LoadAdditional or ReserveUnit, %Total N

19、o.of Units1 100 225033331/3 442555 or more 20 6 or more26.2 2010 ASHRAE HandbookRefrigeration (SI)Receivers and Refrigerant DistributionReceivers, either vertical or horizontal, must be installed so as toretain a liquid seal at their outlet under all conditions of pitch, roll,trim, or list. They sho

20、uld be fitted with an impact-resistant levelglass,andmaybeadditionallyfittedwithelectroniclevelindication.All of the same methods of refrigerant distribution that are usedin stationary refrigeration plants are also used in shipboard refriger-ation, including the use of secondary refrigerants. Genera

21、lly, thesame requirements must be met, in addition to those imposed byoperating at sea.Take care to ensure proper operation at any vessel angle that maybe encountered. For direct-expansion systems, piping must ensureadequate oil return. Liquid-level controls used for flooded and recir-culating syste

22、ms should be located in the middle of vessels ratherthan at either end. Provisions must be taken in vessel design to min-imize liquid sloshing caused by sea conditions.System piping must be able to withstand the stresses of operationatsea,includingvibration,impact,andflexingoftheshipsstructure.Contr

23、olsRecent technological developments have significantly changedhow marine refrigeration plants are controlled. Electromechanicalcontrols, which in earlier decades supplanted manual controls, arenow increasingly being supplanted with solid-state controls in newand existing installations. The prolifer

24、ation of electronics has influ-enced temperature and pressure controls, motor controls, level con-trols, data and trend logging, compressor sequencing, and leakdetection. Microprocessors are becoming the common method ofcompressor control. As solid-state technology advances, its advan-tages become i

25、ncreasingly pronounced. Automatic sequencing ofmultiple compressors has become as simple as entering parameterson a keypad. Electronic temperature controls are very precise, caneasily be provided with multiple set points for varying duties, andcan be located hundreds of metres away from the space th

26、ey control.Pressures, temperatures, amperages, flow rates, liquid levels,events, and virtually any other information required can be deliv-ered electronically to one or more central locations for monitoringand control. Computer technology allows logging these data forlong- and short-term storage. Th

27、e data can even be transmitted bysatellite from a vessel at sea to a shore-based facility.Electronic leak detection equipment can reduce the potential foraccidental exposure to dangerous levels of refrigerant vapor in con-fined spaces.Applications of solid-state technology are too numerous, andevolv

28、ing too quickly, to list completely in this chapter. Changes incontrols technology are probably the most significant in marinerefrigeration over the last few years. Note, though, that sophisti-cated controls are not a substitute for sound design and construction.Whatever control system is used, prop

29、er documentation must beprovided; operating instructions must provide enough detail forusers to operate the system with a minimum amount of training.Thermometers and ThermostatsThe thermometer (or thermostat display) is the principal indicatorofhowarefrigeration plantisfunctioning. Accurate controlo

30、fspace/room temperature depends on proper placement of the sensor(s) inthat space. In spaces where the product is held just above freezing,placement is critical to avoid freezing the product. Sensors used withforced-air evaporators in this type of application should be placed inthe delivery airstrea

31、m, which is the point of critical temperature.Thus, if 0 to 0.5C air is delivered, the product will be cooled aseffectively as possible without risk of freezing. In spaces where awider variance in temperature is tolerable, sensor placement is lesscritical. However,alwaysattempt toplacethem inthemost

32、represen-tative location.Temperature recorders are essential to proper operation andcontrol of cargo refrigeration systems. These can be paper charts,electronic media storage, or some combination of the two. Theshipper or buyer of the product or cargo often specifies the type ofrecording device.Elec

33、tronic thermometers and thermostats have come into wideuse. They allow for long distances between the sensor and the con-troller or display, are very precise, can often be tied in with micro-processor system controls and data logging systems, and many canbe calibrated in the field. In a large refrig

34、erated space, multiple sen-sors can be combined to give an average reading to the display orcontroller.CARGO HOLDSArrangementArrangement and dimensions are determined by the ships struc-ture, compliance with compartmentalization of the hull as related towatertight integrity, vessel stability, and fi

35、re resistance. Cargo holdsshould not be designed exclusively for high-temperature service un-lessitiscertainthatthevesselwillalwaysremaininthatlimitedtrade.Refrigeration controls must be located where they can be readilyaccessed by operating personnel regardless of whether holds are fullof cargo. Wh

36、en controls, piping, or other equipment, such as evap-orators, are located near hatches, adequate measures must be takento prevent damage from impact by cargo, hatch covers, etc.The greater the number of subdivisions in the refrigerated com-partments, the greater the loss to the ships revenue-genera

37、tingspaces, because of the volumes occupied by insulated partitions,cooling apparatus, piping, and accesses. Thus, the all-refrigeratedship, with only the main structural boundaries insulated, makes themostefficientuseofashipsrefrigeratedenclosures.Thisefficiencycomes with disadvantages, such as the

38、 difficulty in providing uni-form temperatures throughout, and the inability to maintain differ-ent cargoes at different temperatures.Space CoolingCargo is tightly packed in refrigerated holds of all types ofvessels, with no aisles or clearances, presenting challenges to thedesigner. Cooling can be

39、by extended-surface overhead-mountedcoils, prime surface coils, or forced air.For operation below freezing, the designer must considerwhether defrosting will occur during operation, as with forced-airhandlers, or after cargo is unloaded, as with prime surface coils. Thehold design must allow for dra

40、ining defrost water from the space,because it cannot usually be discharged to the outside of the space,as in stationary plants.Insulation and ConstructionInsulation. Moisture-, vapor-, and water-resistant insulation isof particular importance aboard ship because of frequent andextreme temperature cy

41、cles caused by intermittent refrigeration. Ontermination of refrigeration at discharging ports, insulation is atlower temperatures than the open room; often, the room surfaces aredripping wet with atmospheric moisture, which enters through theopen door or hatch. Both warm and cold sides should be mo

42、isture-sealed equally; cold-side breather ports are not recommended.Other common sources of water in ships cold storages are meltingice and defrosting cool surfaces.Severe service conditions, which subject the insulation to injuryor change by mechanical damage or vibration, and intermittentrefrigera

43、tion place exacting requirements on insulation for shipscoldstorages.Theidealshipboardcompositeinsulation shouldhavethe following characteristics:High insulating valueImperviousness to moisture from any sourceLight in weightMarine Refrigeration 26.3Flexibility and resilience to accommodate ships str

44、esses andloadingGood structural strengthResistance to infiltrating airResistance to disintegration or deteriorationFire resistance or fireproof self-extinguishing qualitiesOdorlessnessNot conducive to harboring rodents or verminReasonable installation costWorkability in constructionIn the United Sta

45、tes, the properties of the insulation and thedetails of construction should meet approval by the U.S. CoastGuard and U.S. Public Health Service. For information on insula-tion materials and moisture barriers, see Chapters 23 and 25 to 27 ofthe 2009 ASHRAE HandbookFundamentals.Construction. The three

46、 principal parts to the cold storageboundaryaretheenvelopeorbasicstructure,theinsulatingmaterial,and the room lining.The envelope is usually partly composed of the ships hull,watertight decks, or watertight main bulkheads with members thatresist vapor entry from the warm side. Inboard boundaries out

47、lin-ing cold storages should have an equal ability to resist moisture. Acontinuous steel internal bulkhead with lap seams and weldedstiffeners provides a boundary of adequate strength and tightness.Details of design may accommodate dimensioned insulators orfacilitate means of fastening these materia

48、ls. Doorway main bucksof steel channel provide good structure, but are usually a source ofsweating on low-temperature rooms because of heat gain throughthe metal. Wooden door bucks minimize sweating but counteractefforts to eliminate concealed wooden structure.Partitioning bulkheads may be of simila

49、r detail, but airtightsealing is less important. Some installations are framed with angle-bar grids, between which the insulator is installed. In passengervessels (over 12 passengers), Coast Guard regulations on fire-resistant construction restrict wood assembly. Under no circum-stances should wood be a part of the deck assembly, because itdeteriorates rapidly under the prevailing conditions.The assembled boundary of a ships cold storage must withstandheavy deck loads and several bulkhead thrusts of cargo when thevessel rolls or pitches in a heavy sea; it must also be able to f

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1