ImageVerifierCode 换一换
格式:PDF , 页数:31 ,大小:972.63KB ,
资源ID:456941      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-456941.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASME STP-PT-022-2008 COMPARISON AND VALIDATION OF CREEP-BUCKLING ANALYSIS METHODS《蠕变弯曲分析方法的比较和验证》.pdf)为本站会员(bowdiet140)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASME STP-PT-022-2008 COMPARISON AND VALIDATION OF CREEP-BUCKLING ANALYSIS METHODS《蠕变弯曲分析方法的比较和验证》.pdf

1、STP-PT-022COMPARISON ANDVALIDATION OFCREEP-BUCKLINGANALYSIS METHODSSTP-PT-022 COMPARISON AND VALIDATION OF CREEP BUCKLING ANALYSIS METHODS Prepared by: Peter Carter Alstom Inc. D.L Marriott Stress Engineering Services, Inc Date of Issuance: September 3, 2008 This report was prepared as an account of

2、 work sponsored by ASME Pressure Technologies Codes and Standards and the ASME Standards Technology, LLC (ASME ST-LLC). Neither ASME, ASME ST-LLC, the authors, nor others involved in the preparation or review of this report, nor any of their respective employees, members, or persons acting on their

3、behalf, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference in this re

4、port to any specific commercial product, process or service by trade name, trademark, manufacturer or otherwise does not necessarily constitute or imply its endorsement, recommendation or favoring by ASME ST-LLC or others involved in the preparation or review of this report, or any agency thereof. T

5、he views and opinions of the authors, contributors and reviewers of the report expressed in this report do not necessarily reflect those of ASME ST-LLC or others involved in the preparation or review of this report, or any agency thereof. ASME ST-LLC does not take any position with respect to the va

6、lidity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a publication against liability for infringement of any applicable Letters Patent, nor assumes any such liability. Users of a publication are expressly advi

7、sed that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement

8、of this publication. ASME is the registered trademark of The American Society of Mechanical Engineers. No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher. ASME Standards Technology, LLC Three P

9、ark Avenue, New York, NY 10016-5990 ISBN No. 0-7918-3174-4 Copyright 2008 by ASME Standards Technology, LLC All Rights Reserved Comparison and Validation of Creep-Buckling Analysis Methods STP-PT-022 iii TABLE OF CONTENTS Foreword v Abstract . vi 1 INTRODUCTION . 7 2 CREEP MODELS 9 2.1 Primary and S

10、econdary Creep. 9 2.2 Tertiary Creep 9 2.3 Isochronous Stress-Strain Curves 11 3 CREEP BUCKLING ANALYSIS TECHNIQUES. 12 3.1 Baseline Finite Element Creep Analyses with Initial Imperfections. 12 3.2 Critical Strain Technique. 12 3.3 Modified Modulus Technique . 13 3.4 Isochronous Stress-Strain Curve

11、Limit/Instability Analysis . 14 3.5 Effect of Tertiary Creep 14 4 EXAMPLE 1 LONG (2-D) CYLINDER UNDER EXTERNAL PRESSURE 16 4.1 Comparison between Shell and Solid Models. 17 4.2 Finite Element Creep Analyses with Initial Imperfections . 17 4.3 Critical Strain and Modified Modulus Calculations 18 4.4

12、Comparison between Shell Secondary Creep Analyses and Time-Independent Isochronous Limit Analyses 18 4.5 Effect of Primary Creep 20 4.6 Effect of Tertiary Creep 21 5 EXAMPLE 2 SPHERE UNDER EXTERNAL PRESSURE . 22 6 EXAMPLE 3 CYLINDER UNDER AXIAL LOAD . 24 7 CONCLUSIONS . 27 References 28 Acknowledgem

13、ents 29 LIST OF TABLES Table 1 - WRC Calculations of Buckling Stress 14 Table 2 - Comparison between Shell and Solid Models for Buckling Times of Cylinders under External Pressure 17 Table 3 - Comparison between Shell Model Buckling Times and Critical Strain Buckling Times. Effects of Initial Imperf

14、ection are Given 19 Table 4 - Comparison between Finite Element Buckling Pressures and Approximate Techniques 20 Table 5 - Comparison of Steady and Primary Creep Buckling Times . 20 Table 6 - Comparison of Isochronous Limit and Tangent Moduli Calculations 21 STP-PT-022 Comparison and Validation of C

15、reep-Buckling Analysis Methods iv Table 7 - Comparison of Finite Element and Isochronous Limit/Instability Analyses for Secondary and Tertiary Creep With Omega = 2000.21 Table 8 - Comparison of Finite Element, Constant Stress Isochronous Limit/Instability, Critical Strain and Tangent Modulus Predict

16、ions for Creep Rupture Model with Omega = 2000.21 Table 9 - Comparison of Finite Element Secondary Creep and Approximate Analyses for Sphere Creep Buckling .23 Table 10 - Comparison of Finite Element Secondary Creep and Approximate Analyses for Cylinder Axial Creep Buckling.26 LIST OF FIGURES Figure

17、 1 - Creep Strain with Steady (Original) and Time Hardening Models, 5 MPa And 20 MPa Stress, Respectively 9 Figure 2 - Creep Strain at Constant Stress for 42 MPa, Omega = 2000, Secondary and Tertiary Creep Models 11 Figure 3 - Isochronous Stress-Strain Curve and Tangent Modulus 13 Figure 4 - Isochro

18、nous Curves for 100,000 Hours for Secondary Creep and Creep Rupture at 44.6 MPa.15 Figure 5 - Undeformed and Buckled Shapes of a Row of Shell Elements .16 Figure 6 - Deflection in Part of Quarter Model Solid Section for R/T = 20 .17 Figure 7 - Displacement-Time Plot for Case 1 in Table 3 and Table 4

19、 18 Figure 8 - Displacement-Time Plot for Case 8 in Table 3 and Table 4 19 Figure 9 - First Elastic Buckling Modes for Sphere and Axisymmetric Model, with Buckling Stress = 1024 MPa. Typical Creep Buckling Mode22 Figure 10 - Creep Buckling for Sphere Case 1 .23 Figure 11 - Finite Element Axisymmetri

20、c Shell Model of Axially Buckled Cylinder: Mode 1.24 Figure 12 - Deflection History for Case 3 of Table 10 Below25 Figure 13 - Deflection History for Case 4 of Table 10 Below25 Comparison and Validation of Creep-Buckling Analysis Methods STP-PT-022 v FOREWORD This document was developed under a rese

21、arch and development project which resulted from ASME Pressure Technology Codes & Standards (PTCS) committee requests to identify, prioritize, and address technology gaps in current or new PTCS Codes, Standards and Guidelines. This project is one of several included for ASME fiscal year 2008 sponsor

22、ship which are intended to establish and maintain the technical relevance of ASME codes & standards products. The specific project related to this document is project 07-11 (BPVC#5), entitled “Comparison and Validation of Creep-Buckling Analysis Methods.” Established in 1880, the American Society of

23、 Mechanical Engineers (ASME) is a professional not-for-profit organization with more than 127,000 members promoting the art, science and practice of mechanical and multidisciplinary engineering and allied sciences. ASME develops codes and standards that enhance public safety, and provides lifelong l

24、earning and technical exchange opportunities benefiting the engineering and technology community. Visit www.asme.org for more information. The ASME Standards Technology, LLC (ASME ST-LLC) is a not-for-profit Limited Liability Company, with ASME as the sole member, formed in 2004 to carry out work re

25、lated to newly commercialized technology. The ASME ST-LLC mission includes meeting the needs of industry and government by providing new standards-related products and services, which advance the application of emerging and newly commercialized science and technology and providing the research and t

26、echnology development needed to establish and maintain the technical relevance of codes and standards. Visit www.stllc.asme.org for more information. STP-PT-022 Comparison and Validation of Creep-Buckling Analysis Methods vi ABSTRACT This report provides comparisons of creep-buckling calculations an

27、d provides guidance on approximate methods which are feasible for design. This report includes a discussion of the various creep models, presents creep buckling analysis techniques, and provides several comparative example calculations. The techniques discussed in this report include: 1. Baseline an

28、alysis. Finite element creep analysis with different creep models and full non-linear strain-displacement (geometrical) analysis. 2. Critical strain technique. Elastic buckling strain defines the creep buckling strain. 3. Tangent/secant modulus approaches. Combinations of tangent and secant moduli o

29、f the isochronous stress-strain curve are used in calculations that reduce to elastic buckling calculations in the elastic case. 4. Use of an isochronous stress-strain curve in a limit/instability analysis of the imperfect structure. An instability (buckling) analysis would be in principle the same

30、as Technique 3, and should generate the same answer. Adding plastic collapse as a failure mode ensures that the yield strength of the structure is not exceeded. This analysis therefore reflects the failure modes which are covered by the baseline technique. Comparison and Validation of Creep-Buckling

31、 Analysis Methods STP-PT-022 7 1 INTRODUCTION This report provides comparisons between approximate and detailed creep-buckling calculations. The objective is to provide guidance on approximate methods which are feasible for design. This requires the efficient calculation of structural strength and t

32、ime to (buckling) failure, so that calculation of margins between design and failure boundaries does not require multiple trial and error creep calculations. The definition of creep buckling is taken to be wide, including elastic and inelastic instability, bifurcation and acceleration of strain and

33、deflection rates due to non-linear geometrical reduction in structural strength. The techniques used in this report are: 1. Baseline analysis. Finite element creep analysis with different creep models and full non-linear strain-displacement (geometrical) analysis. 2. Critical strain technique. Elast

34、ic buckling strain defines the creep buckling strain. (1, 2, 3) 3. Tangent/secant modulus approaches. Combinations of tangent and secant moduli of the isochronous stress-strain curve are used in calculations that reduce to elastic buckling calculations in the elastic case. (4, 5, 6) 4. Use of an iso

35、chronous stress-strain curve in a limit/instability analysis of the imperfect structure. An instability (buckling) analysis would be in principle the same as technique 3, and should generate the same answer. Adding plastic collapse as a failure mode ensures that the yield strength of the structure i

36、s not exceeded. This analysis therefore reflects the failure modes which are covered by the baseline technique. Techniques 2 and 3 do not have an explicit treatment of initial imperfection or out-of roundness. For simple structures such as cylinders and spheres, Technique 1 requires an initial imper

37、fection to give a reasonable result. With no defined initial imperfection it may or may not give a result, and if there was a result, it may or may not bear any resemblance to reality. Technique 4 requires the same initial imperfection as 1 to give a reasonable result. The selection of the initial i

38、mperfection is simple for the cases considered in this report. It is the first elastic buckling mode shape with a defined magnitude. For more complex structures, it may be necessary to examine a number of possible imperfection mode shapes, and to base the strength prediction on the mode which gives

39、the most conservative result. This is conveniently done by using a range of elastic buckling mode shapes, but other plausible or defined imperfection shapes can easily be used. A 0.5 mm radial imperfection with 100 mm radius corresponds to the ASME definition of 1% maximum acceptable out-of-round. T

40、his and 0.1 mm imperfections are considered in this report. Plasticity is not included. The cases to be analyzed will represent reasonable design conditions in terms of stress, temperature and life. Under these circumstances significant plasticity would not be expected for the simple structures in t

41、his report, unless it occurred due to severe distortions late in life. It would be difficult to load these structures so that initial yielding occurred which did not lead to instantaneous elastic-plastic buckling. In this case there is no difference between the technique 4 limit/instability analysis

42、 and the Technique 1 baseline analysis. However, plasticity may be readily included in all the analyses if necessary. There is no reason why isochronous stress-strain curves constructed from tests or from full elastic-creep-plasticity properties should present any difficulties over and above those i

43、n this report. Inclusion of plasticity in the full inelastic analysis and in the three approximate methods is not expected to change the conclusions based on the creep models. The ability of the approximate STP-PT-022 Comparison and Validation of Creep-Buckling Analysis Methods 8 methods to capture

44、time-dependent strength and instability is being tested. Plasticity adds another variable but no extra complexity to the problem. Any realistic or practical creep-buckling assessment should use full elastic-inelastic isochronous data. This report distinguishes between primary, secondary and tertiary

45、 creep only to prove this. Comparison and Validation of Creep-Buckling Analysis Methods STP-PT-022 9 2 CREEP MODELS 2.1 Primary and Secondary Creep For modeling primary and secondary creep, for convenience with the Abaqus options, the time-hardening power law model for creep strain rate is used. cnm

46、At=& (1) where A = 1.26 x 10-15n = 4.0 m = 0 for secondary creep stress is in MPa time t is in hours. This secondary creep law with m = 0 is an approximate model for Grade 22 steel at 515C. To account for primary creep we use the form of the creep model in equation 1, with the following constants. A

47、 = 1.26 x 10-12n = 4.0 m = 0.51 for primary and secondary creep up to 1 x 106hours stress is in MPa time t is in hours. Figure 1 shows creep strain as function of time for 5 and 20 MPa. 0.0E+002.0E-044.0E-046.0E-040.0E+00 5.0E+05 1.0E+06Time (hours)CreepstrainSteadyTime hardening0.0E+006.0E-071.2E-0

48、61.8E-060.0E+00 5.0E+05 1.0E+06Time (hours)CreepstrainSteadyTime hardeningFigure 1 - Creep Strain with Steady (Original) and Time Hardening Models, 5 MPa And 20 MPa Stress, Respectively 2.2 Tertiary Creep To account for tertiary creep, the “Omega” model in API 579-1/ASME FFS-1 1 is used in this stud

49、y. This model for creep gives the classical tertiary creep behavior, with creep strain rate STP-PT-022 Comparison and Validation of Creep-Buckling Analysis Methods 10 increasing significantly and asymptotically for strains greater than 1/, the Monkman-Grant strain. In this approach, a model (or data) for steady creep is modified as follows. Creep strain rate is 0exp( )cc c = & (2) where 0c&= secondary creep rate from equation (1), with m = 0 For constant stress, creep strain at time t is 01ln(1 )cct=& (3) The isochronous secant modulus is csE =/+(4) The

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1