1、Designation: A6/A6M 11Standard Specification forGeneral Requirements for Rolled Structural Steel Bars,Plates, Shapes, and Sheet Piling1This standard is issued under the fixed designation A6/A6M; the number immediately following the designation indicates the year oforiginal adoption or, in the case o
2、f revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope*1.1 This general
3、 requirements specification2covers a groupof common requirements that, unless otherwise specified in theapplicable product specification, apply to rolled structural steelbars, plates, shapes, and sheet piling covered by each of thefollowing product specifications issued by ASTM:ASTMDesignation3Title
4、 of SpecificationA36/A36M Carbon Structural SteelA131/A131M Structural Steel for ShipsA242/A242M High-Strength Low-Alloy Structural SteelA283/A283M Low and Intermediate Tensile Strength Carbon Steel PlatesA328/A328M Steel Sheet PilingA514/A514M High-Yield Strength, Quenched and Tempered Alloy SteelP
5、late Suitable for WeldingA529/A529M High-Strength Carbon-Manganese Steel of Structural Qual-ityA572/A572M High-Strength Low-Alloy Columbium-Vanadium SteelA573/A573M Structural Carbon Steel Plates of Improved ToughnessA588/A588M High-Strength Low-Alloy Structural Steel with 50 ksi (345MPa) Minimum Yi
6、eld Point to 4 in. 100 mm ThickA633/A633M Normalized High-Strength Low-Alloy Structural Steel PlatesA656/A656M Hot-Rolled Structural Steel, High-Strength Low-Alloy Platewith Improved FormabilityA678/A678M Quenched-and-Tempered Carbon and High-Strength Low-Alloy Structural Steel PlatesA690/A690M High
7、-Strength Low-Alloy Steel H-Piles and Sheet Piling forUse in Marine EnvironmentsA709/A709M Carbon and High-Strength Low-Alloy Structural SteelShapes, Plates, and Bars and Quenched-and-TemperedAlloy Structural Steel Plates for BridgesA710/A710M Age-Hardening Low-Carbon Nickel-Copper-Chromium-Mo-lybde
8、num-Columbium Alloy Structural Steel PlatesA769/A769M Carbon and High-Strength Electric Resistance Welded SteelStructural ShapesA786/A786M Rolled Steel Floor PlatesA808/A808M High-Strength Low-Alloy Carbon, Manganese, Columbium,Vanadium Steel of Structural Quality with Improved NotchToughnessA827/A8
9、27M Plates, Carbon Steel, for Forging and Similar ApplicationsA829/A829M Plates, Alloy Steel, Structural QualityA830/A830M Plates, Carbon Steel, Structural Quality, Furnished toChemical Composition RequirementsA852/A852M Quenched and Tempered Low-Alloy Structural Steel Platewith 70 ksi 485 Mpa Minim
10、um Yield Strength to 4 in.100 mm ThickA857/A857M Steel Sheet Piling, Cold Formed, Light GageA871/A871M High-Strength Low Alloy Structural Steel Plate with Atmo-spheric Corrosion ResistanceA913/A913M Specification for High-Strength Low-Alloy Steel Shapes ofStructural Quality, Produced by Quenching an
11、d Self-Tempering Process (QST)A945/A945M Specification for High-Strength Low-Alloy Structural SteelPlate with Low Carbon and Restricted Sulfur for ImprovedWeldability, Formability, and ToughnessA950/A950M Specification for Fusion Bonded Epoxy-Coated StructuralSteel H-Piles and Sheet PilingA992/A992M
12、 Specification for Steel for Structural Shapes for Use inBuilding FramingA1026 Specification for Alloy Steel Structural Shapes for Use inBuilding FramingA1043/A1043M Specification for Structural Steel with Low Yield to TensileRatio for Use in Buildings1.2 Annex A1 lists permitted variations in dimen
13、sions andmass (Note 1) in SI units. The values listed are not exactconversions of the values in Tables 1 to 31 inclusive but are,instead, rounded or rationalized values. Conformance toAnnexA1 is mandatory when the “M” specification designation isused.NOTE 1The term “weight” is used when inch-pound u
14、nits are thestandard; however, under SI, the preferred term is “mass.”1.3 Annex A2 lists the dimensions of some shape profiles.1.4 Appendix X1 provides information on coil as a sourceof structural products.1.5 Appendix X2 provides information on the variability oftensile properties in plates and str
15、uctural shapes.1.6 Appendix X3 provides information on weldability.1.7 Appendix X4 provides information on cold bending ofplates, including suggested minimum inside radii for coldbending.1.8 This general requirements specification also covers agroup of supplementary requirements that are applicable
16、toseveral of the above product specifications as indicated therein.1This specification is under the jurisdiction of ASTM Committee A01 on Steel,Stainless Steel and Related Alloys and is the direct responsibility of SubcommitteeA01.02 on Structural Steel for Bridges, Buildings, Rolling Stock and Ship
17、s.Current edition approved April 1, 2011. Published May 2011. Originallyapproved in 1949. Last previous edition approved in 2010 as A6/A6M 10a. DOI:10.1520/A0006_A0006M-11.2For ASME Boiler and Pressure Vessel Code applications, see related Specifi-cation SA-6/SA-6M in Section II of that Code.1*A Sum
18、mary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.Such requirements are provided for use where additionaltesting or additional restrictions are required by the purchaser,and ap
19、ply only where specified individually in the purchaseorder.1.9 In case of any conflict in requirements, the requirementsof the applicable product specification prevail over those of thisgeneral requirements specification.1.10 Additional requirements that are specified in the pur-chase order and acce
20、pted by the supplier are permitted,provided that such requirements do not negate any of therequirements of this general requirements specification or theapplicable product specification.1.11 For purposes of determining conformance with thisgeneral requirements specification and the applicable produc
21、tspecification, values are to be rounded to the nearest unit in theright-hand place of figures used in expressing the limitingvalues in accordance with the rounding method of PracticeE29.1.12 The text of this general requirements specificationcontains notes or footnotes, or both, that provide explan
22、atorymaterial. Such notes and footnotes, excluding those in tablesand figures, do not contain any mandatory requirements.1.13 The values stated in either inch-pound units or SI unitsare to be regarded separately as standard. Within the text, theSI units are shown in brackets. The values stated in ea
23、chsystem are not exact equivalents; therefore, each system is tobe used independently of the other, without combining valuesin any way.1.14 This general requirements specification and the appli-cable product specification are expressed in both inch-poundunits and SI units; however, unless the order
24、specifies theapplicable “M” specification designation (SI units), the struc-tural product is furnished to inch-pound units.1.15 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appr
25、o-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:3A131/A131M Specification for Structural Steel for ShipsA370 Test Methods and Definitions for Mechanical Testingof Steel ProductsA673/A673M Specifica
26、tion for Sampling Procedure forImpact Testing of Structural SteelA700 Practices for Packaging, Marking, and Loading Meth-ods for Steel Products for ShipmentA751 Test Methods, Practices, and Terminology for Chemi-cal Analysis of Steel ProductsA829/A829M Specification forAlloy Structural Steel PlatesA
27、941 Terminology Relating to Steel, Stainless Steel, Re-lated Alloys, and FerroalloysE29 Practice for Using Significant Digits in Test Data toDetermine Conformance with SpecificationsE112 Test Methods for Determining Average Grain SizeE208 Test Method for Conducting Drop-Weight Test toDetermine Nil-D
28、uctility Transition Temperature of FerriticSteels2.2 American Welding Society Standards:4A5.1/A5.1M Mild Steel Covered Arc-Welding ElectrodesA5.5/A5.5M Low-Alloy Steel Covered Arc-Welding Elec-trodesA5.17/A5.17M Specification For Carbon Steel ElectrodesAnd Fluxes For Submerged Arc WeldingA5.18/A5.18
29、M Specification For Carbon Steel ElectrodesAnd Rods For Gas Shielded Arc WeldingA5.20/A5.20M Carbon Steel Electrodes For Flux CoredArcWeldingA5.23/A5.23M Low Alloy Steel Electrodes And Fluxes ForSubmerged Arc WeldingA5.28/A5.28M Specification For Low-Alloy Steel Elec-trodes And Rods For Gas Shielded
30、 Arc WeldingA5.29/A5.29M Specification for Low-Alloy Steel Elec-trodes for Flux Cored Arc WeldingD1.1/D1.1M Structural Welding Code Steel2.3 U.S. Military Standards:5MIL-STD-129 Marking for Shipment and StorageMIL-STD-163 Steel Mill Products Preparation for Ship-ment and Storage2.4 U.S. Federal Stan
31、dard:5Fed. Std. No. 123 Marking for Shipments (Civil Agencies)2.5 ASME Boiler Pressure Vessel Code Standard:6BPVC Section IX Welding and Brazing Qualifications3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 Plates (other than floor plates)Flat, hot-rolled steel,ordered to thic
32、kness or weight mass and typically width andlength, commonly classified as follows:3.1.1.1 When Ordered to Thickness:(1) Over 8 in. 200 mm in width and 0.230 in. 6 mm orover in thickness.(2) Over 48 in. 1200 mm in width and 0.180 in. 4.5 mmor over in thickness.3.1.1.2 When Ordered to Weight Mass:(1)
33、 Over 8 in. 200 mm in width and 9.392 lb/ft247.10kg/m2 or heavier.(2) Over 48 in. 1200 mm in width and 7.350 lb/ft235.32kg/m2 or heavier.3.1.1.3 DiscussionSteel products are available in variousthickness, width, and length combinations depending uponequipment and processing capabilities of various m
34、anufactur-ers and processors. Historic limitations of a product based upon3For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe
35、ASTM website.4Available from American Welding Society (AWS), 550 NW LeJeune Rd.,Miami, FL 33126, http:/www.aws.org.5Available from Standardization Documents Order Desk, DODSSP, Bldg. 4,Section D, 700 Robbins Ave., Philadelphia, PA 19111-5098, http:/www.dodssp.daps.mil.6Available from American Societ
36、y of Mechanical Engineers (ASME), ASMEInternational Headquarters, Three Park Ave., New York, NY 10016-5990, http:/www.asme.org.A6/A6M 112dimensions (thickness, width, and length) do not take intoaccount current production and processing capabilities. Toqualify any product to a particular product spe
37、cification re-quires all appropriate and necessary tests be performed and thatthe results meet the limits prescribed in that product specifi-cation. If the necessary tests required by a product specificationcannot be conducted, the product cannot be qualified to thatspecification. This general requi
38、rement standard contains per-mitted variations for the commonly available sizes. Permittedvariations for other sizes are subject to agreement between thecustomer and the manufacturer or processor, whichever isapplicable.3.1.1.4 Slabs, sheet bars, and skelp, though frequentlyfalling in the foregoing
39、size ranges, are not classed as plates.3.1.1.5 Coils are excluded from qualification to the appli-cable product specification until they are decoiled, leveled orstraightened, formed (if applicable), cut to length, and, ifrequired, properly tested by the processor in accordance withASTM specification
40、 requirements (see Sections 9-15, 18, and19 and the applicable product specification).3.1.2 Shapes (Flanged Sections):3.1.2.1 structural-size shapesrolled flanged sections hav-ing at least one dimension of the cross section 3 in. 75 mm orgreater.3.1.2.2 bar-size shapesrolled flanged sections having
41、amaximum dimension of the cross section less than 3 in. 75mm.3.1.2.3 “W” shapesdoubly-symmetric, wide-flangeshapes with inside flange surfaces that are substantially paral-lel.3.1.2.4 “HP” shapesare wide-flange shapes generallyused as bearing piles whose flanges and webs are of the samenominal thick
42、ness and whose depth and width are essentiallythe same.3.1.2.5 “S” shapesdoubly-symmetric beam shapes withinside flange surfaces that have a slope of approximately 1623%.3.1.2.6 “M” shapesdoubly-symmetric shapes that cannotbe classified as “W,”“ S,” or “HP” shapes.3.1.2.7 “C” shapeschannels with ins
43、ide flange surfacesthat have a slope of approximately 1623 %.3.1.2.8 “MC” shapeschannels that cannot be classified as“C” shapes.3.1.2.9 “L” shapesshapes having equal-leg and unequal-leg angles.3.1.3 sheet pilingrolled steel sections that are capable ofbeing interlocked, forming a continuous wall whe
44、n individualpieces are driven side by side.3.1.4 barsrounds, squares, and hexagons, of all sizes; flats1364 in. (0.203 in.) and over over 5 mm in specified thickness,not over 6 in. 150 mm in specified width; and flats 0.230 in.and over over 6 mm in specified thickness, over 6 to 8 in.150 to 200 mm i
45、nclusive, in specified width.3.1.5 exclusivewhen used in relation to ranges, as forranges of thickness in the tables of permissible variations indimensions, is intended to exclude only the greater value of therange. Thus, a range from 60 to 72 in. 1500 to 1800 mmexclusive includes 60 in. 1500 mm, bu
46、t does not include 72in. 1800 mm.3.1.6 rimmed steelsteel containing sufficient oxygen togive a continuous evolution of carbon monoxide during soldi-fication, resulting in a case or rim of metal virtually free ofvoids.3.1.7 semi-killed steelincompletely deoxidized steel con-taining sufficient oxygen
47、to form enough carbon monoxideduring solidification to offset solidification shrinkage.3.1.8 capped steelrimmed steel in which the rimmingaction is limited by an early capping operation. Capping iscarried out mechanically by using a heavy metal cap on abottle-top mold or chemically by an addition of
48、 aluminum orferrosilicon to the top of the molten steel in an open-top mold.3.1.9 killed steelsteel deoxidized, either by addition ofstrong deoxidizing agents or by vacuum treatment, to reducethe oxygen content to such a level that no reaction occursbetween carbon and oxygen during solidification.3.
49、1.10 mill edgethe normal edge produced by rollingbetween horizontal finishing rolls. A mill edge does notconform to any definite contour. Mill edge plates have two milledges and two trimmed edges.3.1.11 universal mill edgethe normal edge produced byrolling between horizontal and vertical finishing rolls. Univer-sal mill plates, sometimes designated UM Plates, have twouniversal mill edges and two trimmed edges.3.1.12 sheared edgethe normal edge produced by shear-ing. Sheared edge plates are trimmed on all edges.3
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1