ImageVerifierCode 换一换
格式:PDF , 页数:4 ,大小:77.28KB ,
资源ID:459471      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-459471.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM A772 A772M-2000(2005) Standard Test Method for ac Magnetic Permeability of Materials Using Sinusoidal Current《正弦电流用材料的交流磁导率的标准试验方法》.pdf)为本站会员(ownview251)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM A772 A772M-2000(2005) Standard Test Method for ac Magnetic Permeability of Materials Using Sinusoidal Current《正弦电流用材料的交流磁导率的标准试验方法》.pdf

1、Designation: A 772/A 772M 00 (Reapproved 2005)Standard Test Method forAC Magnetic Permeability of Materials Using SinusoidalCurrent1This standard is issued under the fixed designation A 772/A 772M; the number immediately following the designation indicates the yearof original adoption or, in the cas

2、e of revision, the year of last revision. A number in parentheses indicates the year of last reapproval.A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method provides a means for determination ofthe impedance permeability (z) of fe

3、rromagnetic materialsunder the condition of sinusoidal current (sinusoidal H) exci-tation. Test specimens in the form of laminated toroidal cores,tape-wound toroidal cores, and link-type laminated coreshaving uniform cross sections and closed flux paths (no airgaps) are used. The method is intended

4、as a means fordetermining the magnetic performance of ferromagnetic striphaving a thickness less than or equal to 0.025 in. 0.635 mm.1.2 This test method shall be used in conjunction with thoseapplicable paragraphs in Practice A 34/A 34M.1.3 The values and equations stated in customary (cgs-emuand i

5、nch-pound) or SI units are to be regarded separately asstandard. Within this standard, SI units are shown in bracketsexcept for the sections concerning calculations where there areseparate sections for the respective unit systems. The valuesstated in each system may not be exact equivalents; therefo

6、re,each system shall be used independently of the other. Combin-ing values from the two systems may result in nonconformancewith this standard.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standar

7、d to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2A 34/A 34M Practice for Sampling and Procurement Test-ing of Magnetic MaterialsA 340 Terminology of Symbols and Definitions Relat

8、ing toMagnetic Testing3. Terminology3.1 DefinitionsThe terms and symbols used in this testmethod are defined in Terminology A 340.4. Significance and Use4.1 The permeability determined by this method is theimpedance permeability. Impedance permeability is the ratio ofthe peak value of flux density (

9、Bmax) to the assumed peakmagnetic field strength (Hz) without regard to phase. Ascompared to testing under sinusoidal flux (sinusoidal B)conditions, the permeabilities determined by this method arenumerically lower since, for a given test signal frequency, therate of flux change (dB/dt) is higher.4.

10、2 This test method is suitable for impedance permeabilitymeasurements at very low magnetic inductions at powerfrequencies (50 to 60 Hz) to moderate inductions below thepoint of maximum permeability of the material (the knee of themagnetization curve) or until there is visible distortion of thecurren

11、t waveform. The lower limit is a function of sample area,secondary turns, and the sensitivity of the flux-reading voltme-ter used. At higher inductions, measurements of flux-generatedvoltages that are appreciably distorted mean that the flux hasappreciable harmonic frequency components. The upper li

12、mitis given by the availability of pure sinusoidal current, which isa function of the power source. In addition, a large ratio ($10)of the total series resistance of the primary circuit to theprimary coil impedance is required. With proper test apparatus,this test method is suitable for use at frequ

13、encies up to 1 MHz.4.3 This test method is suitable for design, specificationacceptance, service evaluation, quality control, and researchuse.5. Apparatus5.1 The test circuit, which is schematically illustrated in Fig.1, shall consist of the following components.5.2 Power SupplyFor power frequency (

14、50- or 60-Hz)testing, a suitable power supply consists of two or three seriesconnected autotransformers of sufficient power rating. This1This test method is under the jurisdiction of ASTM Committee A06 onMagnetic Properties and is the direct responsibility of SubcommitteeA06.01 on TestMethods.Curren

15、t edition approved Nov. 1, 2005. Published November 2005. Originallyapproved in 1980. Last previous edition approved in 2000 as A 772/A 772M 00.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards v

16、olume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.will provide a continuously variable current source to excitethe test specimen. For testing at other t

17、han power frequency, anac power source consisting of a low distortion sinosoidal signalgenerator and linear amplifier are required. The use of feedbackcontrol of the power amplifier is permitted.5.3 Isolation/Stepdown TransformerThe use of a lowdistortion isolation/stepdown transformer is highly rec

18、om-mended for operator safety and to eliminate any dc bias currentpresent when using electronic power supplies. A combinedisolation/stepdown transformer can provide greater controlwhen testing is done at very low magnetizing currents.5.4 Primary Series Resistor (Z)A noninductive resistorhaving suffi

19、ciently high resistance to maintain sinusoidal cur-rent conditions at the highest magnetizing current and testsignal frequency of interest. In practice, resistance values of 10to 100 V are used. If this resistor is used to measure themagnetizing current, the resistance shall be known to betterthan 0

20、.5 % and the resistance shall not increase by more than0.5 % at the rated maximum current of the power supply.5.5 True RMS Ammeter (A)A true rms ammeter or acombination of a noninductive, precision current viewingresistor and true rms voltmeter shall be used to measure themagnetizing current. The me

21、ter shall have an accuracy of betterthan 0.5 % full scale at the test frequency. The current viewingresistor, if used, shall have an accuracy better than 0.5 % andshall have sufficient power rating such that the resistance shallnot vary by more than 0.5 % at the rated maximum current ofthe power sup

22、ply.5.6 Flux Measuring Voltmeter (V)The flux shall be deter-mined from the voltage induced in the secondary windingusing one of the following type of voltmeter:(1) an average responding digital voltmeter calibrated to readrms volts for a sine wave or(2) a true average responding digital voltmeter.Th

23、e voltmeter shall have input impedance greater than 1 MV,a full-scale accuracy of better than 0.5 % at the test frequency,and a crest factor capability of 3 or greater.6. Procedure6.1 Specimen PreparationAfter determining the mass anddimensions of the test specimen, it should be enclosed in asuitabl

24、e insulating case to prevent intimate contact between itand the primary and secondary windings. This will alsominimize the stress introduced by winding. The case shape andsize shall approximate that of the test specimen so that thesecondary winding encloses minimal air flux. All test speci-mens shal

25、l have a uniform rectangular cross section.6.1.1 The cross-sectional area and mean magnetic pathlength of the test specimen shall be calculated using theequations in 7.1 and 7.2 or 8.1 and 8.2. To obtain acceptableuniformity of magnetic field strength throughout the specimen,the following dimensiona

26、l constraints shall be observed:(1) for a toroid the inside diameter to outside diameter ratioshall exceed 0.82 and(2) for the link specimen shown in Fig. 2, the separation (s)shall exceed nine times the radial width (w).6.1.2 A secondary winding (N2) using insulated wire shallbe uniformly distribut

27、ed over the test specimen using asufficient number of turns so that a measurable voltage will beobtained at the lowest flux density of interest. A uniformlydistributed primary winding (N1) of insulated wire shall beapplied on top of the secondary winding and be of sufficientdiameter to conduct the h

28、ighest intended magnetizing currentsafely without significant heating. Twisted leads or biconductorcable shall be used to connect the specimen windings to the testapparatus.6.2 Calculation of Test SignalsTesting is done either asspecified values of flux density (Bmax) or magnetic fieldstrength (Hz).

29、 Before testing, the rms magnetizing currents orvoltages generated in the secondary shall be calculated usingthe equations found in 7.3 and 7.4 or 8.3 and 8.4.6.3 DemagnetizationAfter connecting the primary andsecondary windings to the apparatus, the test specimen shall bedemagnetized by applying a

30、magnetizing current sufficientlylarge to create a magnetic field strength greater than ten timesthe coercivity of the test specimen. The magnetizing currentthen shall be slowly and smoothly reduced to zero to demag-netize the test specimen. The frequency used should be thesame as the test frequency.

31、6.4 MeasurementThe magnetizing current shall be care-fully increased until the lowest value of either magnetizingcurrent (if measuring at a specified value of magnetic fieldstrength) or flux density (if measuring at a specified value offlux density) is obtained. Both the magnetizing current andsecon

32、dary voltage shall be recorded. The magnetizing currentis then increased to the next test point and the process repeateduntil all test points have been measured. It is imperative thatmeasurements be made in order of increasing magnetic fieldstrength or flux density. When a prescribed value of magnet

33、icfield strength or flux density has been accidentally exceededduring the test, the specimen must be demagnetized and testingresumed at that point.6.4.1 At the conclusion of testing, the magnetizing currentshall be reduced to zero and the specimen removed from theFIG. 1 Schematic Circuit for Sinusoi

34、dal Current Permeability TestFIG. 2 Schematic of Link-Type LaminationA 772/A 772M 00 (2005)2test apparatus. The impedance permeability shall be calculatedusing the equations found in 7.5 or 8.5.7. Calculation (Customary Units)7.1 Calculation of Mean Magnetic Path Length, l (assumedto be equal to the

35、 mean geometric path):7.1.1 For toroidal cores:l 5p D 1 d!2(1)where:l = mean magnetic path length, cm;D = outside diameter, cm; andd = inside diameter, cm.7.1.2 For link cores of the form shown in Fig. 2:l 5 2L 1ps 1 w! 5 2L01 p 2!s 1 p 4!w (2)where:l = mean magnetic path length, cm;L0= total length

36、, cm;L = length of parallel sides, cm;s = wall separation, cm; andw = radial width, cm.7.2 Calculation of Cross-Sectional Area, A:7.2.1 For either toroidal or link-type cores, the cross-sectional area is calculated from the mass and mean magneticpath length as:A 5mld(3)where:A = cross-sectional area

37、, cm2;m = specimen mass, gm;l = mean magnetic path length, cm; andd = specimen density, g/cm3.Note that the core height or lamination stacking factor is notrequired in the preceding equation.7.3 Calculation of the Assumed Peak Magnetic FieldStrength, HzThe assumed peak magnetic field strength is cal

38、culated fromthe rms value of magnetizing current as:Hz50.4p=2N1Iml(4)where:Hz= assumed peak magnetic field strength, Oe;N1= number of primary turns;lm= rms magnetizing current, A; andl = mean magnetic path length of specimen, cm.7.4 Calculation of Peak Flux Density, Bmax7.4.1 The peak flux density w

39、hen using an average respond-ing voltmeter calibrated to yield rms values for a sine wave iscalculated as:Bmax5108Ef=2pfN2A(5)7.4.2 The peak flux density when using a true averageresponding voltmeter is calculated as:Bmax5108Eavg4fN2A(6)where:Bmax= peak flux density (induction), gauss;Ef= flux volta

40、ge measured across secondary winding,V;Eavg= average voltage measured across secondary wind-ing, V;f = test frequency, Hz;N2= number of secondary turns; andA = cross-sectional area of test specimen, cm2.7.5 Calculation of Impedance Permeability, z7.5.1 The impedance permeability is calculated as the

41、 ratioof Bmaxto Hzor:z5BmaxHz(7)8. Calculation (SI Units)8.1 Calculation of Mean Magnetic Path Length, l (assumedto be equal to the mean geometric path):8.1.1 For toroidal cores:l 5p D 1 d!2(8)where:l = mean magnetic path length, m;D = outside diameter, m; andd = inside diameter, m.8.1.2 For link co

42、res of the form shown in Fig. 2:l 5 2L 1ps 1 w! 5 2L01 p 2!s 1 p 4!w (9)where:l = mean magnetic path length, m;L0= total length, m;L = length of parallel sides, m;s = wall separation, m; andw = radial width, m.8.2 Calculation of Cross-Sectional Area, A8.2.1 For either toroidal or link type cores, th

43、e cross-sectional area is calculated from the mass and mean magneticpath length as:A 5mld(10)where:A = cross-sectional area, m2;m = specimen mass, kg;l = mean magnetic path length, m; andd = specimen density, kg/m3.Note that the core height or lamination stacking factor is notrequired in the precedi

44、ng equation.8.3 Calculation of the Assumed Peak Magnetic FieldStrength, HzThe assumed peak magnetic field strength is calculated fromthe rms value of magnetizing current as:Hz5=2N1Iml(11)where:Hz= assumed peak magnetic field strength, A/m;N1= number of primary turns;A 772/A 772M 00 (2005)3lm= rms ma

45、gnetizing current, A; andl = mean magnetic path length of specimen, m.8.4 Calculation of Peak Flux Density, Bmax8.4.1 The peak flux density when using an average respond-ing voltmeter calibrated to yield rms values for a sine wave iscalculated as:Bmax5Ef=2pfN2A(12)8.4.2 The peak flux density when us

46、ing a true averageresponding voltmeter is calculated as:Bmax5Eavg4fN2A(13)where:Bmax= peak flux density (induction), tesla;Ef= flux voltage measured across secondary winding,V;Eavg= average voltage measured across secondary wind-ing, V;f = test frequency, Hz;N2= number of secondary turns; andA = cro

47、ss-sectional area of test specimen, m2.8.5 Calculation of Impedance Permeability, z8.5.1 In the SI system of units, the ratio of Bmaxto Hzis theabsolute impedance permeability. A more useful form is therelative impedance permeability which is the ratio of theabsolute permeability to the permeability

48、 of free space or:z5BmaxGmHz(14)Gm= magnetic constant equal to 4p3107H/m.9. Precision and Bias9.1 The precision and bias of this test method have not beenestablished by interlaboratory study. However, it is estimatedthat the precision of measurement is no worse than 65%.10. Keywords10.1 magnetic fie

49、ld strength; magnetic flux density; mag-netic induction; permeability; sinusoidal current; toroidal coreASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1