ImageVerifierCode 换一换
格式:PDF , 页数:5 ,大小:81.93KB ,
资源ID:460302      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-460302.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM A996 A996M-2014 Standard Specification for Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement《混凝土用条钢和车轴钢变形钢棒的标准规格》.pdf)为本站会员(bowdiet140)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM A996 A996M-2014 Standard Specification for Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement《混凝土用条钢和车轴钢变形钢棒的标准规格》.pdf

1、Designation: A996/A996M 14Standard Specification forRail-Steel and Axle-Steel Deformed Bars for ConcreteReinforcement1This standard is issued under the fixed designation A996/A996M; the number immediately following the designation indicates the yearof original adoption or, in the case of revision, t

2、he year of last revision. A number in parentheses indicates the year of last reapproval.A superscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This specification covers rail-steel and axle-steel barsfor concrete reinforcement. Three types of product

3、 areincluded, designated with a “rail symbol,” and an “R” for barsmade of rail-steel and with an “A” for bars made of axle-steel.The standard sizes and dimensions of deformed bars and theirnumber designations are given in Table 1. All sizes and gradesof all types may not be readily available; manufa

4、cturers shouldbe consulted to verify availability.1.2 The text of this specification references notes andfootnotes that provide explanatory material. These notes andfootnotes, excluding those in tables and figures, shall not beconsidered as requirements of the specification.1.3 Type “rail symbol” an

5、d Type R are of two minimumyield strength levels, namely 50 000 psi 350 MPa and 60 000psi 420 MPa designated as Grade 50 350 and Grade 60420, respectively. Type A is of two minimum yield levels,namely 40 000 psi 280 MPa and 60 000 psi 420 MPadesignated as Grade 40 280 and Grade 60 420, respectively.

6、1.4 The weldability of the steel is not a requirement of thisspecification.1.5 This specification is applicable for orders in eitherinch-pound units (Specification A996) or SI units (Specifica-tion A996M).1.6 The values stated in either inch-pound units or SI unitsare to be regarded as standard. Wit

7、hin the text, the SI units areshown in brackets. The values stated must be used indepen-dently of the other. Combining values from the two systemsmay result in nonconformance with the specification.1.7 This standard does not purport to address all of thesafety concerns, if any, associated with its u

8、se. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2A370 Test Methods and Definitions for Mechanical Testingof Steel ProductsA

9、700 Practices for Packaging, Marking, and Loading Meth-ods for Steel Products for Shipment (Withdrawn 2014)3A751 Test Methods, Practices, and Terminology for Chemi-cal Analysis of Steel ProductsE29 Practice for Using Significant Digits in Test Data toDetermine Conformance with Specifications2.2 Mili

10、tary Standard:4MIL-STD-129 Marking for Shipment and Storage2.3 Federal Standard:4Fed. Std. No. 123 Marking for Shipment (Civil Agencies)3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 deformations, nprotrusions on a deformed bar.3.1.2 deformed bar, nsteel bar with transverse p

11、rotrusions;a bar that is intended for use as reinforcement in reinforcedconcrete construction.3.1.2.1 DiscussionThe surface of the bar is provided withlugs or protrusions that inhibit longitudinal movement of thebar relative to the concrete surrounding the bar in suchconstruction. The lugs or protru

12、sions conform to the provisionsof this specification.3.1.3 rib, nlongitudinal protrusion on a deformed bar.4. Ordering Information4.1 It shall be the responsibility of the purchaser to specifyall requirements that are necessary for material ordered to thisspecification. Such requirements shall inclu

13、de, but are notlimited to, the following.1This specification is under the jurisdiction of ASTM Committee A01 on Steel,Stainless Steel and Related Alloys and is the direct responsibility of SubcommitteeA01.05 on Steel Reinforcement.Current edition approved March 1, 2014. Published March 2014. Origina

14、llyapproved in 1998. Last previous edition approved in 2009 as A996/A996M 09b.DOI: 10.1520/A0996_A0996M-14.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the stand

15、ards Document Summary page onthe ASTM website.3The last approved version of this historical standard is referenced onwww.astm.org.4Available from Standardization Documents Order Desk, DODSSP, Bldg. 4,Section D, 700 Robbins Ave., Philadelphia, PA 19111-5098, http:/www.dodssp.daps.mil.*A Summary of Ch

16、anges section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States14.1.1 Quantity (weight) mass,4.1.2 Name of material (rail-steel or axle-steel deformedbars for concrete reinforcement),4.1.3 Type,4.1.4 S

17、ize,4.1.5 Grade,4.1.6 Packaging (see Section 20),4.1.7 ASTM designation and year of issue, and4.1.8 Certified mill test reports (if desired).5. Materials and Manufacture5.1 The bars shall be rolled from standard section Tee railsor from carbon steel axles for railway cars and locomotives. Noother ma

18、terials, such as those known by the terms “rerolled,rail-steel equivalent, and rail-steel quality” shall be substituted.6. Carbon Determination6.1 The chemical analysis of the material, as describedbelow, shall be determined in accordance with Test Methods,Practices, and Terminology A751. For axle-s

19、teel product, themanufacturer shall make a determination for the carbon contentof each axle received for manufacture into reinforcing bars.Based on these carbon determinations, all steel axles shall bestocked for subsequent rolling in separated lots by carbonrange. The ranges of carbon shall be dete

20、rmined by themanufacturer as those best suited to meet the mechanicalrequirements.6.2 When requested by the purchaser, the manufacturershall report the carbon range for each lot of bars furnished.7. Requirements for Deformations7.1 Deformations shall be spaced along the bar at substan-tially uniform

21、 distances. The deformations on opposite sides ofthe bar shall be similar in size, shape, and pattern.7.2 The deformations shall be placed with respect to the axisof the bar so that the included angle is not less than 45. Wherethe line of deformations forms an included angle with the axisof the bar

22、from 45 to 70 inclusive, the deformations shallreverse alternately in direction from those on the opposite side.Where the line of deformations is over 70, reversal indirection shall not be required.7.3 The average spacing or distance between deformationson each side of the bar shall not exceed seven

23、 tenths of thenominal diameter of the bar.7.4 The overall length of the deformations shall be such thatthe gap (measured as a chord) between the ends of thedeformations shall not exceed 12.5 % of the nominal perimeterof the bar. Where the ends terminate in a rib, the width of therib shall be conside

24、red as the gap between these ends. Thesummation of the gaps shall not exceed 25 % of the nominalperimeter of the bar. Furthermore, the summation of gaps shallnot exceed 25 % of the nominal permeter of the bar. Thenominal perimeter of the bar shall be 3.1416 times the nominaldiameter.7.5 The spacing,

25、 height, and gap of deformations shallconform to the requirements prescribed in Table 1.8. Measurements of Deformation8.1 The average spacing of deformations shall be deter-mined by measuring the length of a minimum of 10 spaces anddividing that length by the number of spaces included in themeasurem

26、ent. The measurement shall begin from a point on adeformation at the beginning of the first space to a correspond-ing point on a deformation after the last included space.Spacing measurements shall not be made over a bar areacontaining bar marking symbols involving letters or numbers.8.2 The average

27、 height of deformations shall be determinedfrom measurements made on not less than two typical defor-mations. Determinations shall be based on three measurementsper deformation, one at the center on the overall length and theother two at the quarter points of the overall length.8.3 Insufficient heig

28、ht, insufficient circumferentialcoverage, or excessive spacing of deformations shall notconstitute cause for rejection unless it has been clearly estab-lished by determinations on each lot (Note 1) tested that typicaldeformation height, gap, or spacing does not conform to theminimum requirements pre

29、scribed in Section 7. No rejectionshall be made on the basis of measurements if fewer than tenadjacent deformations on each side of the bar are measured.NOTE 1As used within the intent of 8.3 and 14.1, the term “lot” shallmean all the bars of one bar number and pattern of deformations containedin an

30、 individual shipping release or shipping order.9. Tensile Requirements9.1 The material, as represented by the test specimens, shallconform to the requirements for tensile properties prescribed inTable 2.TABLE 1 Deformed Bar Designation Numbers, Nominal Weights Masses, Nominal Dimensions, and Deforma

31、tion RequirementsBar Designation No.Nominal Weight,lb/ft Nominal Mass,kg/mNominal DimensionsADeformation Requirements, in. mmDiameter, in. mmCross-SectionalArea in.2mm2Perimeter, in. mmMaximum AverageSpacingMinimum AverageHeightMaximum Gap(Chord of 12.5 % ofNominal Perimeter)3 10 0.376 0.560 0.375 9

32、.5 0.11 71 1.178 29.9 0.262 6.7 0.015 0.38 0.143 3.64 13 0.668 0.994 0.500 12.7 0.20 129 1.571 39.9 0.350 8.9 0.020 0.51 0.191 4.95 16 1.043 1.552 0.625 15.9 0.31 199 1.963 49.9 0.437 11.1 0.028 0.71 0.239 6.16 19 1.502 2.235 0.750 19.1 0.44 284 2.356 59.8 0.525 13.3 0.038 0.97 0.286 7.37 22 2.044 3

33、.042 0.875 22.2 0.60 387 2.749 69.8 0.612 15.5 0.044 1.12 0.334 8.58 25 2.670 3.973 1.000 25.4 0.79 510 3.142 79.8 0.700 17.8 0.050 1.27 0.383 9.7AThe nominal dimensions of a deformed bar are equivalent to those of a plain round bar having the same weight mass per foot metre as the deformed bar.A996

34、/A996M 1429.2 The yield point or yield strength shall be determined byone of the following methods.9.2.1 The yield point shall be determined by the drop of thebeam or halt in the gage of the tensile testing machine.9.2.2 Where the steel tested does not have a well-definedyield point, the yield stren

35、gth shall be determined by the offsetmethod (0.2 % offset), as described in Test Methods andDefinitions A370.9.3 The percentage of elongation shall be as prescribed inTable 2.10. Bending Requirements10.1 The bend test specimen shall withstand being bentaround a pin without cracking on the outside ra

36、dius of the bentportion. The requirements for degree of bending and sizes ofpins are prescribed in Table 3.10.2 The bend test shall be made on specimens of sufficientlength to ensure free bending and with an apparatus whichprovides the following.10.2.1 Continuous and uniform application of forcethro

37、ughout the duration of the bending operation.10.2.2 Unrestricted movement of the specimen at points ofcontact with the apparatus and bending around a pin free torotate.10.2.3 Close wrapping of the specimen around a pin duringthe bending operation.10.3 It shall be permissible to use other acceptable,

38、 moresevere methods of bend testing, such as placing a specimenacross two pins free to rotate and applying the bending forcewith a fixed pin. When failures occur under more severemethods, retest shall be permitted under the bend test methodprescribed in 10.2.11. Permissible Variation in Weight Mass1

39、1.1 Deformed reinforcing bars shall be evaluated on thebasis of nominal weight mass. The weight mass determinedusing the measured weight mass of the test specimen androunding in accordance with Practice E29, shall be at least94 % of the applicable weight mass per unit length prescribedin Table 1. In

40、 no case shall overweight excess mass of anydeformed bar be cause for rejection.12. Finish12.1 The bars shall be free of detrimental surface imperfec-tions.12.2 Rust, seams, surface irregularities, or mill scale shallnot be cause for rejection, provided the weight, dimensions,cross-sectional area, a

41、nd tensile properties of a hand wirebrushed test are not less than requirements of this specification.12.3 Surface imperfections or flaws other than those speci-fied in 12.2 shall be considered detrimental when specimenscontaining such imperfections fail to conform to either tensileor bending requir

42、ements. Examples include, but are not limitedto, laps, seams, slivers, cooling or casting cracks, and mill orguide marks.13. Test Specimens13.1 All mechanical tests shall be conducted in accordancewith Test Methods and Definitions A370, including Annex A9.13.2 Tension test specimens shall be the ful

43、l section of baras rolled.13.3 The unit stress determinations on full-size specimensshall be based on the nominal bar area.13.4 The bend test specimens shall be the full section of thebar as rolled.14. Number of Tests14.1 For all bar sizes, one tension test, one bend test, andone set of dimensional

44、property tests including bar weightmass and spacing, height, and gap of deformations shall bemade from each lot (Note 1) of 10 tons 9 mg, or fractionthereof.15. Retests15.1 If the results of an original tension specimen fail tomeet the specified minimum requirements and are within 2000psi 14 MPa of

45、the required tensile strength, within 1000 psi7 MPa of the required yield strength, or within two percent-age points of the required elongation, a retest shall be permittedon two random specimens for each original tension specimenfailure from the lot. Both retest specimens shall meet therequirements

46、 of this specification.15.2 If a bend test fails for reasons other than mechanicalreasons or flaws in the specimen as described in 15.4.2 and15.4.3, a retest shall be permitted on two random specimensfrom the same lot. Both retest specimens shall meet therequirements of this specification. The retes

47、t shall be per-formed on test specimens that are at air temperature but not lessthan 60F 16C.TABLE 2 Tensile RequirementsGrade 40 280 Grade 50 350 Grade 60 420Tensile strength, 70 000 500 80 000 550 90 000 620min, psi MPaYield strength, 40 000 280 50 000 350 60 000 420min, psi MPaElongation in 8 in.

48、 Type200 mm, min, % Rail Symboland R ABar Designation no. 3 10 11 6 6 84, 5, 6 13, 16, 19 12 7 6 87 22 11 6 5 88 25 10 5 4.5 7TABLE 3 Bend Test RequirementsPin Diameter for Bend TestABar Designation Nos. Type Rail Symbol Type R Type A3, 4, 5 10, 13, 16 6dB312d 312d6, 7, 8 19, 22, 25 6d 5d 5dATest be

49、nds 180.Bd = nominal diameter of specimen.A996/A996M 14315.3 If a weight mass test fails for reasons other than flawsin the specimen as described in 15.4.3, a retest shall bepermitted on two random specimens from the same lot. Bothretest specimens shall meet the requirements of this specifica-tion.15.4 If the original test or any of the random retests failsbecause of any reas

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1