1、Designation: B 546 04 (Reapproved 2009)Standard Specification forElectric Fusion-Welded Ni-Cr-Co-Mo Alloy (UNS N06617),Ni-Fe-Cr-Si Alloys (UNS N08330 and UNS N08332), Ni-Cr-Fe-Al Alloy (UNS N06603), Ni-Cr-Fe Alloy (UNS N06025), andNi-Cr-Fe-Si Alloy (UNS N06045) Pipe1This standard is issued under the
2、 fixed designation B 546; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the las
3、t revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope1.1 This specification covers electric fusion-welded nickel-chromium-cobalt-molybdenum alloy UNS N06617, nickel-iron-chromium-silicon alloys UNS N08330 and UNS N08332,Ni-Cr-Fe-Al Alloy (
4、UNS N06603), Ni-Cr-Fe Alloy UNSN06025, and Ni-Cr-Fe-Si Alloy UNS N06045 pipe intendedfor heat resisting applications and general corrosive service.1.2 This specification covers pipe in sizes 3 in. (76.2 mm)nominal diameter and larger and possessing a minimum wallthickness of 0.083 in. (2.11 mm).1.3
5、The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units that are provided for information onlyand are not considered standard.1.4 This standard does not purport to address all of thesafety concerns, if any, associat
6、ed with its use. It is theresponsibility of the user of this standard to become familiarwith all hazards including those identified in the appropriateMaterial Safety Data Sheet (MSDS) for this product/materialas provided by the manufactureer, to establish appropriatesafety and health practices, and
7、determine the applicability ofregulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2B 168 Specification for Nickel-Chromium-Iron Alloys(UNS N06600, N06601, N06603, N06690, N06693,N06025, N06045, and N06696) and Nickel-Chromium-Cobalt-Molybdenum Alloy (UNS N06617) Plate, Shee
8、t,and StripB 536 Specification for Nickel-Iron-Chromium-Silicon Al-loys (UNS N08330 and N08332) Plate, Sheet, and StripB 775 Specification for General Requirements for Nickeland Nickel Alloy Welded PipeB 899 Terminology Relating to Non-ferrous Metals andAlloysE10 Test Method for Brinell Hardness of
9、Metallic Materi-alsE 140 Hardness Conversion Tables for Metals RelationshipAmong Brinell Hardness, Vickers Hardness, RockwellHardness, Superficial Hardness, Knoop Hardness, andScleroscope HardnessE 1473 Test Methods for Chemical Analysis of Nickel,Cobalt, and High-Temperature Alloys2.2 ASME Standard
10、s:3Boiler and Pressure Vessel Code, Section VIII ParagraphUW-51Boiler and Pressure Vessel Code, Section IX3. Terminology3.1 Definitions:3.1.1 Definitions for terms defined in Terminology B 899shall apply unless otherwise defined by the requirements of thisdocument.4. General Requirement4.1 Material
11、furnished in accordance with this specificationshall conform to the applicable requirements of the currentedition of Specification B 775 unless otherwise providedherein.5. Classification5.1 Two classes of pipe are covered as follows:5.1.1 Class 1All welded joints to be 100 % inspected byradiography.
12、1This specification is under the jurisdiction of ASTM Committee B02 onNonferrous Metals and Alloys and is the direct responsibility of SubcommitteeB02.07 on Refined Nickel and Cobalt and Their Alloys.Current edition approved Oct. 1, 2009. Published October 2009. Originallyapproved in 1971. Last prev
13、ious edition approved in 2004 as B 546 04.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from Ame
14、rican Society of Mechanical Engineers (ASME), ASMEInternational Headquarters, Three Park Ave., New York, NY 10016-5990, http:/www.asme.org.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.5.1.2 Class 2No radiographic examination is re
15、quired.6. Ordering Information6.1 It is the responsibility of the purchaser to specify allrequirements that are necessary for the safe and satisfactoryperformance of material ordered under this specification.Examples of such requirements include, but are not limited to,the following:6.1.1 Alloy (Tab
16、le 1),6.1.2 ASTM designation and year of issue,6.1.3 Class (See 5.1),6.1.4 Dimensions (standard pipe size and schedule),6.1.5 Length (specific or random),6.1.6 Quantity (feet or number of pieces),6.1.7 CertificationState if certification is required,6.1.8 Whether type of filler metal and deposited c
17、omposi-tion is required (see 8.3),6.1.9 Samples for Product (Check) AnalysisState whethersamples for product (check) analysis should be furnished, and6.1.10 Purchaser InspectionIf purchaser wishes to wit-ness tests or inspection of material at place of manufacture, thepurchase order must so state in
18、dicating which tests or inspec-tions are to be witnessed.7. Materials and Manufacture7.1 MaterialsThe UNS N08330 and UNS N08332 alloyplate material shall conform to the requirements of Specifica-tion B 536. The UNS N06617, UNS N06603, UNS N06025,and UNS N06045 alloy plate material shall conform to t
19、herequirements of Specification B 168.7.2 Welding:7.2.1 The joints shall be double-welded, full-penetrationwelds made by qualified operators in accordance with proce-dures in the ASME Boiler and Pressure Vessel Code, SectionIX.7.2.2 The weld shall be made either manually or automati-cally by an elec
20、tric process involving the deposition of fillermetal.7.2.3 The joint shall be reinforced at the center of the weldon each side of the formed plate by a weld bead at least116 in.(1.6 mm) but not more than18 in. (3.2 mm). This reinforce-ment (weld bead) may be removed at the manufacturers optionor by
21、agreement between the manufacturer and the purchaser.The contour of the reinforcement (weld bead) shall be smooth,with no valley or groove along the edge or in the center of theweld, and the deposited metal shall be fused smoothly anduniformly into the formed-plate surface. The finish of thewelded j
22、oint shall be reasonably smooth and free of irregulari-ties, grooves, or depressions.7.2.4 Weld defects shall be repaired by removal to soundmetal and rewelding. Subsequent heat treatment and inspectionshall be as required on the original welds.7.3 Heat TreatmentAll pipe shall be furnished in theann
23、ealed condition.7.4 Surface FinishThe pipe shall be free from scale.When bright annealing is used, descaling is not necessary.8. Chemical Composition8.1 The material shall conform to the composition limitsspecified in Table 1. One test is required for each lot as definedin Specification B 775.8.2 If
24、 a product analysis is performed, it shall meet thechemistry limits prescribed in Table 1, subject to the analysistolerances specified in Table 1 of Specification B 775.8.3 The chromium and nickel content of the deposited weldmetal shall conform to the minimum chromium and nickelcontents required fo
25、r the base metal. Note that the compositionof the deposited weld metal may not be the same as the basemetal. The user should establish suitability for his particularapplication. When specified in the purchase order (see section6.1.8), the manufacturer shall report the type of filler metalused along
26、with a chemical analysis of the deposited weldmetal.9. Mechanical and Other Requirements9.1 Tensile Properties:TABLE 1 Chemical RequirementsElementComposition Limits, %N08330 N08332 N06603 N06617 N06025 N06045Carbon 0.08 max 0.050.10 0.20-0.40 0.050.15 0.150.25 0.050.12Manganese 2.00 max 2.00 max 0.
27、15 max 1.0 max 0.15 max 1.0 maxPhosphorus 0.03 max 0.03 max 0.20 max . 0.02 max 0.02 maxSulfur 0.03 max 0.03 max 0.10 max 0.015 max 0.010 max 0.010 maxSilicon 0.75 to 1.50 0.75 to 1.50 0.50 max 1.0 max 0.5 max 2.53.0Chromium 17.0 to 20.0 17.0 to 20.0 0.24-0.26 20.024.0 24.026.0 26.029.0Nickel 34.0 t
28、o 37.0 34.0 to 37.0 Bal remainder Bal 45.0 minCopper 1.00 max 1.00 max 0.50 max 0.5 max 0.1 max 0.3 maxLead 0.005 max 0.005 max . . . .Tin 0.025 max 0.025 max . . . .Iron remainderAremainder 8.011.0 3.0 max 8.011.0 21.025.0Aluminum . . 2.4-3.0 0.81.5 1.82.4 .Cobalt . . . 10.015.0 . .Molybdenum . . .
29、 8.010.0 . .Zirconium . . 0.010.10 . 0.010.10 .Yttrium . . 0.010.15 . 0.050.12 .Cerium . . . . . 0.30.09Titanium . . 0.010-0.025 . . .AElement shall be determined arithmetically by difference.B 546 04 (2009)29.1.1 Transverse tension tests taken across the weld jointsshall meet the requirements shown
30、 in Table 2.9.2 Transverse Guided-Bend Weld Tests:9.2.1 Two bend test specimens shall be taken transverselyfrom the pipe. One shall be subject to a face guided-bend testand the second to a root guided-bend test.9.2.2 The bend test shall be acceptable if no cracks or otherdefects exceeding18 in. (3.2
31、 mm) in any direction be present inthe weld metal or between the weld and the pipe metal afterbending. Cracks which originate along the edges of thespecimen during testing and that are less than14 in. (6.4 mm)measured in any direction, shall not be considered.9.3 Pressure (Leak) TestAny pipe that sh
32、ows leaks duringhydrostatic testing shall be rejected.9.4 Grain SizeAnnealed alloy UNS N08332 shall con-form to an average grain size of ASTM No. 5 or coarser.9.5 Annealing TemperatureAlloy UNS N08330 shall beannealed at 1900F (1040C) minimum. Alloy UNS N08332shall be annealed at 2100F (1150C) minim
33、um. Alloy UNSN06617 shall be annealed at 2050F (1121C) minimum.AlloyUNS N06025 shall be annealed at 2100F (1150C) minimum.Alloy UNS N06603 and UNS N06045 shall be annealed at2120F (1160C) minimum.10. Permissible Variations in Dimensions10.1 Permissible VariationsThe dimensions at any pointin a lengt
34、h of pipe shall not exceed the following:10.1.1 Straightness, Using a 10-ft. (3.05-m) straightedgeplaced so that both ends are in contact with the pipe;18 in. (3.2mm).10.1.2 ThicknessThe minimum wall thickness at anypoint in the pipe shall not be more than 0.01 in. (0.25 mm)under the nominal thickne
35、ss.10.2 Lengths:10.2.1 Circumferentially welded joints of the same qualityas the longitudinal joints shall be permitted by agreementbetween the manufacturer and the purchaser.11. Workmanship, Finish, and Appearance11.1 FinishPipe shall be furnished with oxide removed.When final test treatment is per
36、formed in a protective atmo-sphere, descaling is not necessary.11.2 Weld Repair of Plate Defects Occurring During PipeFabricationRepair of injurious defects, which occur duringthe fabrication of the pipe from plate, shall be permitted onlysubject to the approval of the purchaser. Defects shall betho
37、roughly checked out before welding. Inspection of welddefects shall be by radiographic or liquid-penetrant technique,at the option of the producer. If the pipe has already beenannealed, it shall be annealed again except in the case of smallvoids, that in the estimation of the purchasers inspector, d
38、o notrequire reannealing. Each length of repaired pipe shall besubjected to the hydrostatic test.12. Number of Tests Required12.1 Transverse Tension TestOne test shall be made torepresent each lot of finished pipe.12.2 Transverse Guided-Bend Weld TestTwo tests shall bemade to represent each lot of f
39、inished pipe.12.3 Grain Size, HardnessOne test per lot.12.4 Pressure (Leak) TestEach length of pipe shall besubjected to the hydrostatic test.12.5 Chemical AnalysisOne test per lot.13. Specimen Preparation13.1 Transverse-tension and bend-test specimens shall betaken from the end of the finished pipe
40、; the transverse-tensionand bend-test specimens shall be flattened cold before finalmachining to size.13.2 As an alternative to the requirements of 13.1, the testspecimens may be taken from a test plate of the same materialas the pipe, which is attached to the end of the cylinder andwelded as a prol
41、ongation of the pipe longitudinal seam.13.3 Tension specimens shall be the full thickness of thematerial and shall be machined to the form and dimensionsshown for large diameter products in Specification B 775.13.4 The test specimens shall not be cut from the pipe or testplate until after final anne
42、al.14. Test Methods14.1 Chemical CompositionIn case of disagreement, thechemical composition shall be determined in accordance withTest Methods E 1473.14.2 Brinell HardnessTest Method E10.14.3 Pressure (Leak) TestEach length of pipe shall betested based on allowable fiber stress, for material as fol
43、lows:UNS N0661723 300 psi (or 161 MPa)UNS N0833017 500 psi (or 121 MPa)UNS N0833216 600 psi (or 114 MPa)UNS N0602524 500 psi (or 169 MPa)UNS N0604522 500 psi (or 155 MPa)UNS N0660324 000 psi (or 165 MPa)14.3.1 Visual examination is to be made when the materialis under pressure for hydrostatic testin
44、g. The full length ofmaterial must be examined for leaks.TABLE 2 Mechanical PropertiesAlloy ConditionTensile Strength,min, psi (MPa)Yield Strength,0.2 %, offset,min, psi (MPa)Elongation in 2 in.or 50 mm,or 4D, min, %HardnessAUNS N08330 Annealed 70 000 (483) 30 000 (207) 30 70 to 90 HRBUNS N08332 Ann
45、ealed 67 000 (462) 27 000 (186) 30 65 to 88 HRBUNS N06603 Annealed 94 000 (650) 43 000 (300) 25 .UNS N06617 Annealed 95 000 (655) 35 000 (240) 30 .UNS N06025 Annealed 98 000 (680) 39 000 (270) 30 .UNS N06045 Annealed 90 000 (620) 35 000 (240) 30 .AHardness values are informative only and not to be c
46、onstrued as the basis for acceptance.B 546 04 (2009)314.4 Hardness ConversionHardness Conversion TablesE 140.14.5 Radiographic Examination:14.5.1 For Class 1 welded-joint quality, all welded jointsshall be 100 % inspected by radiography.14.5.2 Radiographic examination shall be in accordancewith the
47、requirements of ASME Boiler and Pressure VesselCode, Section VIII, latest edition, Paragraph UW-51.15. Packaging and Package Marking15.1 Pipes which have been weld repaired in accordancewith 7.2.4 shall be marked WR.16. Keywords16.1 fusion-welded pipe; N08330; N08332; N06603;N06617; N06025; N06045AS
48、TM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are e
49、ntirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1