ImageVerifierCode 换一换
格式:PDF , 页数:4 ,大小:72.25KB ,
资源ID:462789      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-462789.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM B922-2010 Standard Test Method for Metal Powder Specific Surface Area by Physical Adsorption《物理吸附法测定金属粉末比表面积的标准试验方法》.pdf)为本站会员(testyield361)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM B922-2010 Standard Test Method for Metal Powder Specific Surface Area by Physical Adsorption《物理吸附法测定金属粉末比表面积的标准试验方法》.pdf

1、Designation: B922 10Standard Test Method forMetal Powder Specific Surface Area by Physical Adsorption1This standard is issued under the fixed designation B922; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revisi

2、on. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method covers determination of surface area ofmetal powders. The test method specifies general proceduresthat are appl

3、icable to many commercial physical adsorptioninstruments. The method provides specific sample outgassingprocedures for listed materials. It includes additional generaloutgassing instructions for other metals. The multipoint equa-tion of Brunauer, Emmett and Teller (BET),2along with thesingle point a

4、pproximation of the BET equation, forms thebasis for all calculations.1.2 This test method does not include all existing proce-dures appropriate for outgassing metallic materials. The pro-cedures included provided acceptable results for samplesanalyzed during interlaboratory testing. The investigato

5、r shalldetermine the appropriateness of listed procedures.1.3 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.3.1 State all numerical values in terms of SI units unlessspecific instrumentation software reports surface area usi

6、ngalternate units. In this case, present both reported and equiva-lent SI units in the final written report. Many instruments reportsurface area as m2/g, instead of using correct SI units (m2/kg).1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use

7、. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:3B215 Practices for Sampling Metal PowdersB243 Terminology of Powder Metallur

8、gyE691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test Method3. Terminology3.1 Definitions:3.1.1 Refer to Terminology B243 for additional terms spe-cific to metal powders.3.2 Definitions of Terms Specific to This Standard:43.2.1 adsorbate, nmaterial that has been

9、 retained by theprocess of adsorption.3.2.2 adsorbent, nany solid having the ability to concen-trate or collect significant quantities of other substances on itssurface.3.2.3 adsorption, na process in which fluid molecules areconcentrated or collected on a surface by chemical or physicalforces, or b

10、oth.3.2.4 adsorptive, nany substance available for adsorption.3.2.5 outgassing, nthe evolution of gas from a material ina vacuum or inert gas flow, at or above ambient temperature.3.2.6 physical adsorption (van der Waals adsorption),nthe binding of an adsorbate to the surface of a solid byforces who

11、se energy levels approximate those of condensation.3.2.7 surface area, nthe total area of the surface of apowder or solid including both external and accessible internalsurfaces (from voids, cracks, open porosity, and fissures). Thearea may be calculated by the BET (Brunauer, Emmett, andTeller) equa

12、tion from gas adsorption data obtained underspecific conditions. It is useful to express this value as thespecific surface area, for example, surface area per unit mass ofsample (m2/kg).3.2.8 surface area (BET), nthe total surface area of a solidcalculated by the BET (Brunauer, Emmett, Teller) equat

13、ion,from nitrogen adsorption or desorption data obtained underspecific conditions.3.2.9 surface area, specific, nthe area, per unit mass of agranular or powdered or formed porous solid, of all externalplus internal surfaces that are accessible to a penetrating gas orliquid.1This test method is under

14、 the jurisdiction of ASTM Committee B09 on MetalPowders and Metal Powder Products and is the direct responsibility of Subcom-mittee B09.03 on Refractory Metal Powders.Current edition approved May 1, 2010. Published June 2010. Originallyapproved in 2002. Last previous edition approved in 2008 as B922

15、02(2008). DOI:10.1520/B0922-10.2Brunauer, S., Emmett, P. H., and Teller, E. “Adsorption of Gases in Multimo-lecular Layers.” Journal of the American Chemical Society, Vol. 60, 1938, pp.309-319.3For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at se

16、rviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.4ASTM Dictionary of Engineering, Science, and Technology, 9th ed., ASTMInternational, West Conshohocken, PA, 2000.1*A Summary of Changes section appears at the end of t

17、his standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.4. Summary of Test Method4.1 An appropriately sized sample (to provide at least theminimum surface area required for reliable results for theinstrument used) is outgassed un

18、der appropriate conditionsprior to analysis.4.2 Multipoint BET Analyses OnlyVolume of gas ad-sorbed, or desorbed, is determined as cm3corrected to standardtemperature and pressure (STP) for a minimum of four relativepressures within the linear BET transformation range of thephysical adsorption, or d

19、esorption, isotherm characteristic ofthe metal. The linear range is that which results in a leastsquares correlation coefficient of 0.9999 or greater for therelationship between BET transformation and relative pressure.Typically, the linear range includes relative pressures between0.05 and 0.30.4.3

20、Single Point BET Analyses OnlyVolume of gas ad-sorbed, or desorbed, is determined as cm3corrected to standardtemperature and pressure (STP) at the highest known relativepressure within the linear BET transformation range of thephysical adsorption, or desorption, isotherm. Typically, arelative pressu

21、re of 0.30 is used. (It may be necessary to firstperform a multipoint analysis of the material to determine theoptimum single point relative pressure.)4.4 The sample is weighed to nearest 0.1 mg after analysis.It is important to use an analytical balance to determine thesample mass. The physical ads

22、orption instrument measures thetotal amount of gas adsorbed onto, or desorbed from, thesample under analysis. The sample mass is then used tonormalize the measured adsorption results. Any error in thesample mass will affect the final BET surface area.4.5 Calculations are based on the BET equation, a

23、s requiredby the instrument being used for the determination. The crosssectional area for the adsorbate is taken to be 0.162 nm2ifnitrogen is used as the adsorptive. Use the appropriate valuerecommended by the instrument manufacturer for adsorptivesother than nitrogen. Report this cross sectional ar

24、ea with theBET surface area results.5. Significance and Use5.1 Both suppliers and users of metals can benefit fromknowledge of the surface area of these materials. Results ofmany intermediate and final processing steps are controlled by,or related to, specific surface area of the metal. The perfor-m

25、ance of many sintered or cast metal structures may bepredicted from the specific surface area of the starting metalpowder, or all or a portion of the finished piece.6. Interferences6.1 This test method can be used to determine the internaland external surface of a powder or solid only after thesesur

26、faces have been cleaned of any physically adsorbed mol-ecules. Such adsorbed species, for example water or volatileorganic compounds, prevent physical adsorption of the gasprobe molecules used to measure surface area. Therefore, it isnecessary to remove these adsorbed contaminants prior tosurface ar

27、ea analysis. Generally, such outgassing is performedby evacuating or flushing the sample. Outgassing can beaccelerated by using elevated temperatures, provided no irre-versible sample changes occur. Typical minimum vacuumlevels attained are 10-1Pa. Typical flushing gases are helium,nitrogen, or a mi

28、xture of the two. Outgassing is complete whenduplicate surface area analyses produce results within expectedinstrument repeatability limits, when a constant residual vaporpressure is maintained upon isolation from the vacuum source,or when flushing gas composition is unaffected while passingover the

29、 sample.7. Apparatus7.1 Commercial instruments are available from severalmanufacturers for the measurement of specific surface area byphysical adsorption. Some are automated versions of theclassical vacuum apparatus. Others make use of balancedadsorption technology. Additionally, commercial instrume

30、ntsare available which measure physical adsorption based on thedynamic flow method.7.2 Analytical Balance, capable of weighing to the nearest0.1 mg.8. Reagents and Materials8.1 Liquid Nitrogen.8.2 Nitrogen, 99.999 mole percent, with the sum of O2,argon, CO2, hydrocarbons (as CH4), and H2O totaling l

31、ess than10 parts per million; dry and oil-free; cylinder, or other sourceof purified nitrogen.8.3 Helium, 99.999 mole percent, with the sum of N2,O2,argon, CO2, hydrocarbons (as CH4), and H2O totaling less than10 parts per million; dry and oil-free; cylinder, or other sourceof purified helium, if ne

32、eded for determination of void spaceabove sample.8.4 Blended Nitrogen and Helium, dry and oil-free; cylin-der, or other source of blended gases. The actual compositionof the blend must be known. For use with dynamic flowinstruments only.9. Hazards9.1 Precautions applying to the use of liquid nitroge

33、n andcompressed gases should be observed.10. Sampling, Test Specimens, and Test Units10.1 It is important that the test portion being analyzedrepresent the larger bulk sample from which it is taken. Thebulk sample should be homogenized before any sampling takesplace. Best results are obtained when a

34、 flowing bulk material istemporarily diverted into a collector for an appropriate time. Itis better to sample the entire flow for a short time than tosample a portion of the flow for a longer time. Collectingseveral small aliquants and combining them improves thereliability of the sampling process.

35、Rotating rifflers are avail-able commercially which satisfy these sampling requirements.Refer to Practices B215 for information on the use of a chutesample splitter.11. Calibration and Standardization11.1 Follow manufacturers instructions for calibration andoperational verification of the instrument

36、.B922 10212. Outgassing12.1 Weigh (to nearest 0.1 mg) a clean, empty sample tube,along with stopper or seal. Record the empty tube mass.12.2 Add test portion to empty sample tube. Sample quan-tity should be sufficient to satisfy minimum surface area asrequired by manufacturer.12.3 Attach prepared sa

37、mple tube to outgassing port ofinstrument. Secure heating mantle or oven around sample tubeat the time appropriate for sample.12.4 Initiate outgassing program according to manufactur-ers instructions. Program mantle or oven for initial outgassingtemperature. Increase temperature as appropriate for t

38、hesample. Allow sample to continue to outgas until prescribedvacuum level or detector signal is achieved, or for prescribedoutgassing time, or both. Samples analyzed during the inter-laboratory study were heated for2hat200C.12.5 Remove heating mantle or oven from sample tube.Allow sample tube to coo

39、l to ambient temperature. Removeand seal sample tube according to manufacturers instructions.12.6 Weigh sample tube (to nearest 0.1 mg) to obtainsample and tube mass. Record mass. Subtract empty sampletube mass determined in 12.1 to obtain outgassed sample mass.Record calculated mass.13. Procedure13

40、.1 Attach appropriately prepared sample holder to analy-sis port according to manufacturers instructions. Include anyrequired hardware.13.1.1 Use nitrogen as adsorptive for all tests. Use blendednitrogen and helium with dynamic flow instruments. Use purenitrogen with volumetric instruments.13.1.2 Us

41、e helium to determine sample holder void spacewith volumetric instruments as necessary.13.1.3 Use liquid nitrogen as cryogen for all tests.13.2 Automated Instruments OnlySelect, or input, desiredanalysis and report parameters.13.2.1 Multipoint BET Analyses OnlyUse at least fouranalysis points in the

42、 linear BET transformation range of theisotherm characteristic of the sample. If necessary, input theoutgassed sample mass. (The final mass should be determinedand entered after the analysis.)13.2.2 Single Point BET Analyses OnlyUse highest rela-tive pressure known to be in the linear BET transforma

43、tionrange of the isotherm. If necessary, input the outgassed samplemass. (The final mass should be determined and entered afterthe analysis.)13.3 Dynamic Flow Instruments OnlyCollect data pointsas volume of gas desorbed versus relative pressure.13.3.1 Multipoint BET Analyses OnlyUse at least fourana

44、lysis points in the linear BET transformation range of theisotherm characteristic of the sample.13.3.2 Single Point BET Analyses OnlyUse highest rela-tive pressure known to be in the linear BET transformationrange of the isotherm.13.4 Perform analysis using the specified conditions accord-ing to ins

45、trument manufacturers instructions.13.5 When the analysis has finished and the sample haswarmed to room temperature, remove and seal the sample tube.Dry tube and weigh (to nearest 0.1 mg). Record the final tubeand sample mass. Subtract the empty tube mass recorded in12.1 to obtain the final sample m

46、ass. Record final sample mass.13.6 Automated Instruments OnlyEdit the file containingsample information to include the final sample mass. Generatefinal sample report.14. Calculations14.1 Automated Instruments OnlySoftware automaticallycalculates results for the chosen reports using the final massinp

47、ut in 13.6.14.2 Dynamic Flow Instruments OnlyFollow manufactur-ers instructions for multipoint, or single point, calculations.Use the final sample mass determined in 13.5 when calculatingthe specific surface area.15. Report15.1 Report the following information:15.1.1 Complete sample identification.1

48、5.1.2 Collected isotherm point(s) as volume adsorbed, ordesorbed, versus relative pressure. Note whether adsorption ordesorption isotherm is used. Note any units used other thanstandard.15.1.3 Analysis gas used (with cross sectional area if otherthan nitrogen).15.1.4 BET specific surface area. Note

49、any units used otherthan standard.15.1.5 Final sample mass. Note any units used other thanstandard.15.1.6 Sample outgassing method, including total time andoutgassing temperature(s).16. Precision and Bias16.1 An interlaboratory study is underway, conducted ac-cording to Practice E691. The study includes iron, tungsten,nickel, cobalt, molybdenum, chromium carbide, and tungstencarbide powders. Expected precision will be determined forthese materials. No statement is given for other metal powders.16.2 PrecisionThe repeatability standard deviation ofsingle poi

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1