ImageVerifierCode 换一换
格式:PDF , 页数:3 ,大小:58.38KB ,
资源ID:463229      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-463229.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM C1070-2001(2014) Standard Test Method for Determining Particle Size Distribution of Alumina or Quartz by Laser Light Scattering《用激光扩散法测定氧化铝和石英粒度分布的标准试验方法》.pdf)为本站会员(feelhesitate105)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM C1070-2001(2014) Standard Test Method for Determining Particle Size Distribution of Alumina or Quartz by Laser Light Scattering《用激光扩散法测定氧化铝和石英粒度分布的标准试验方法》.pdf

1、Designation: C1070 01 (Reapproved 2014)Standard Test Method forDetermining Particle Size Distribution of Alumina or Quartzby Laser Light Scattering1This standard is issued under the fixed designation C1070; the number immediately following the designation indicates the year oforiginal adoption or, i

2、n the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of particlesize distribution of alumina

3、or quartz using laser light scatter-ing instrumentation in the range from 0.1 to 500 m.1.2 The procedure described in this test method may beapplied to other nonplastic ceramic powders. It is at thediscretion of the user to determine the methods applicability.1.3 This test method applies to analysis

4、 using aqueousdispersions.1.4 This standard may involve hazardous materials, opera-tions and equipment. This standard does not purport to addressall of the safety concerns, if any, associated with its use. It isthe responsibility of the user of this standard to establishappropriate safety and health

5、 practices and determine theapplicability of regulatory limitations prior to use.1.5 Quartz has been classified by IARC as a Group Icarcinogen. For specific hazard information in handling thismaterial, see the suppliers Material Safety Data Sheet.2. Terminology2.1 Definitions of Terms Specific to Th

6、is Standard:2.1.1 background,extraneous scattering of light by ele-ments other than the particles to be measured. This includesscattering by contamination in the measurement zone.2.1.2 Fraunhofer Diffraction,the optical theory that de-scribes the low-angle scattering of light by particles that arela

7、rge compared to the wavelength of the incident light.2.1.3 Mie Scattering,the complex electromagnetic theorythat describes the scattering of light by spherical particles. It isusually applied to particles with diameters that are close to thewavelength of the incident light. The real and the imaginar

8、yindices of light diffraction are needed.22.1.4 multiple scattering,the rescattering of light by aparticle in the path of light scattered by another particle. Thismay occur in heavy concentrations of a particle dispersion.3. Summary of Test Method3.1 A sample dispersed in an aqueous medium is circul

9、atedthrough the path of a light beam. As the particles pass throughthe light beam, the particles scatter light at angles inverselyproportional to their size and with an intensity directly propor-tional to their size. Detectors collect the scattered light whichis converted to electrical signals and a

10、nalyzed in a micropro-cessor. The signal is converted to size distribution usingFraunhofer Diffraction or Mie Scattering, or a combination ofboth. The scattering information is then processed, assumingthe particles to be spherical, using algorithms or modelsproprietary to the particular instrument m

11、anufacturer. Calcu-lated particle size distributions are presented as equivalentspherical diameters.4. Significance and Use4.1 It is important to recognize that the results obtained bythis method or any other method for particle size distributionutilizing different physical principles may disagree.

12、The resultsare strongly influenced by the physical principles employed byeach method of particle size analysis. The results of anyparticle sizing method should be used only in a relative sense,and should not be regarded as absolute when comparing resultsobtained by other methods.4.2 Light scattering

13、 theory that is used for determination ofparticle size has been available for many years. Severalmanufacturers of testing equipment have units based on theseprinciples.Although each type of testing equipment utilizes thesame basic principles for light scattering as a function ofparticle size, differ

14、ent assumptions pertinent to applications of1This test method is under the jurisdiction of ASTM Committee C28 onAdvanced Ceramics and is the direct responsibility of Subcommittee C28.03 onPhysical Properties and Non-Destructive Evaluation.Current edition approved Jan. 1, 2014. Published January 2014

15、. Originallyapproved in 1986. Last previous edition approved in 2007 as C1070-01 (2007).DOI: 10.1520/C1070-01R14.2Muly, E. C., Frock, H. W., “Industrial Particle Size Measurement Using LightScattering,” Optical Engineering, 196, pp. 86169 (1990).Copyright ASTM International, 100 Barr Harbor Drive, P

16、O Box C700, West Conshohocken, PA 19428-2959. United States1the theory and different models for converting light measure-ments to particle size may lead to different results for eachinstrument. Therefore, the use of this test method cannotguarantee directly comparable results from the various manu-f

17、acturers instruments.4.3 Manufacturers and purchasers of alumina and quartzwill find the method useful to determine particle size distribu-tions for materials specifications, manufacturing control, andresearch and development.5. Interferences5.1 Air bubbles entrained in the circulating fluid will sc

18、atterlight and then be reported as particles. Circulating fluids do notrequire degassing, but should be bubble-free upon visualinspection.5.2 Reagglomeration or settling of particles during analysesmay cause erroneous results. Stable dispersions shall bemaintained throughout the analyses. To determi

19、ne if stability ispresent, make multiple runs on the same sample and observe ifthe distribution stays the same throughout the analysis. If thedistribution gets coarser, then agglomeration is occurring. Ifthe distribution gets finer, there exists the possibility ofmaterial settling. Dispersion proper

20、ties may be altered bychanging dispersants, use of ultrasonic energy prior to orduring analyses, and change of pumping speed during analyses.5.3 Insufficient sample loading may cause electrical noiseinterference and poor data repeatability. Excessive sampleloading may cause excessive light attenuati

21、on and multiplescattering, thereby resulting in erroneous particle size distribu-tions. The size distribution will have a tendency to be finer thanactually exists.6. Apparatus6.1 Particle Size Analyzer, based on Fraunhofer Diffractionor Mie Scattering or a combination of both light scatteringanalysi

22、s techniques. Care must be taken to ensure that theanalyzer system or subsystem is optimum for the size rangebeing tested.6.2 Liquid Handling System.7. Reagents7.1 Purity of ReagentsReagent grade of chemicals shallbe used in all tests. Unless otherwise indicated, it is intendedthat all reagents shal

23、l conform to the specifications of theCommittee on Analytical Reagents of the American ChemicalSociety, where such specifications are available. Other gradesmay be used, provided it is first ascertained that the reagent isof sufficiently high purity to permit its use without lesseningthe precision o

24、f the determination.7.2 Dispersion MediaDissolve 1.5 g of sodium metaphos-phate in 1 liter of distilled water and use this solution at anappropriate level so that the particles remain suspended in theaqueous system without creating bubbles. Other dispersantsmay be used for this purpose as well, such

25、 as SodiumPyrophosphate, Tween 80, Triton X100, Photoflow, or others.The optimum dispersant for the analysis is dependent on thematerial being analyzed and the amount of mixing and ultra-sound available for each particular particle size analyzersystem.8. Calibration and Standardization8.1 Performanc

26、e of the instrument is defined by the spacingand position of the optical components. Refer to the manufac-turers instruction manual.8.2 Diagnostic materials should be available from the in-strument manufacturer to ensure consistent instrument func-tioning.8.3 Since no absolute standards are availabl

27、e for particlesize analysis, it is recommended that one should develop asecondary reference material to assist in evaluating and opti-mizing instrument performance.9. Procedure9.1 Allow the instrument to warm up for the time recom-mended by the instrument manufacturer.9.2 If necessary, select applic

28、able instrument range as indi-cated by the instrument manufacturers instructions and estab-lish correct optical alignment according to the instructions.9.3 If required and available, use the index of refractioncapability of the instrument. Many of the common compoundshave their index of refraction l

29、isted in the Handbook ofPhysical Chemistry. Many compounds can also be found listedin the instrument manufacturers instruction manual. The indexof refraction used should be relative to the aqueous media,which has a refractive index of 1.33. When entering the indexof refraction for the material being

30、 analyzed therefore, it isnecessary to divide the index of refraction of the compoundbeing analyzed by the index of refraction of water.9.4 Measure the background in the mode in which theanalysis will be performed. The dispersion media should beadded to the sampling chamber before the background mea

31、-surement is performed. Be sure that the carrier fluid is flowingthrough the light path and the sample cell while measuring thebackground, and make sure that no bubbles are present.Background values shall not exceed the manufacturers speci-fications. If the background values exceed the manufacturers

32、recommendations, perform the necessary procedures as speci-fied by the manufacturer to bring the background values withinacceptable limits.9.5 Before adding the sample, be sure to use the appropriateamount of the dispersion media to the sampling chamber. Thenadd the test sample. Obtain a test sample

33、 using appropriatesampling techniques. Sample-splitting equipment such as chuteriflers and rotary rifflers are available commercially to assist inthese tasks. Refer to the instrument manufacturers recommen-dation to insure that the amount of the test sample is acceptableto obtain optimum light scatt

34、ering conditions. A range ofsample size is acceptable depending upon the median particlesize and particle density.9.6 Select the appropriate run time for the sample. Thisprocedure is very specific to the application and is generallygauged by the run-to-run repeatability.C1070 01 (2014)29.7 Select th

35、e desired data output parameters according tothe requirements set forth by the instrument manufacturer.9.8 Determine proper dispersion conditions for the testsample. An example is described in Test Method C690 sec-tion6.4.NOTE 1Some instruments have built-in ultrasonic baths to aid indispersion. Oth

36、ers do not, and as a result, dispersions will have to be madeexternally using ultrasonic baths or probes. Also, food processors such asblenders may be used.9.9 Perform the analysis according to the manufacturersinstruction.9.10 Upon completing the analysis, drain and rinse systemin preparation for t

37、he next analysis. Drain and rinse as manytimes as necessary to obtain the background values as specifiedby the manufacturer.10. Precision and Bias10.1 PrecisionRepeatability study varied from 0.18 %above 7 m to 0.01 % at 1 m. Reproducibility study variedfrom 0.5 % above 7 m to 0.1 % below 1 m.10.2 B

38、iasAs there are no generally accepted absolutestandards, bias cannot be determined.ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the

39、validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your

40、comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments h

41、ave not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multip

42、le copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org). Permission rights to photocopy the standard may also be secured from the ASTM website (www.astm.org/COPYRIGHT/).C1070 01 (2014)3

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1