ImageVerifierCode 换一换
格式:PDF , 页数:10 ,大小:149.66KB ,
资源ID:464369      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-464369.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM C1365-2006(2011) Standard Test Method for Determination of the Proportion of Phases in Portland Cement and Portland-Cement Clinker Using X-Ray Powder Diffraction Analysis《用X射线.pdf)为本站会员(feelhesitate105)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM C1365-2006(2011) Standard Test Method for Determination of the Proportion of Phases in Portland Cement and Portland-Cement Clinker Using X-Ray Powder Diffraction Analysis《用X射线.pdf

1、Designation: C1365 06 (Reapproved 2011)Standard Test Method forDetermination of the Proportion of Phases in PortlandCement and Portland-Cement Clinker Using X-Ray PowderDiffraction Analysis1This standard is issued under the fixed designation C1365; the number immediately following the designation in

2、dicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method covers direct determin

3、ation of theproportion by mass of individual phases in portland cement orportland-cement clinker using quantitative X-ray (QXRD)analysis. The following phases are covered by this standard:alite (tricalcium silicate), belite (dicalcium silicate), aluminate(tricalcium aluminate), ferrite (tetracalcium

4、 aluminoferrite),periclase (magnesium oxide), gypsum (calcium sulfate dihy-drate), bassanite (calcium sulfate hemihydrate), anhydrite (cal-cium sulfate), and calcite (calcium carbonate).1.2 This test method specifies certain general aspects of theanalytical procedure, but does not specify detailed a

5、spects.Recommended procedures are described, but not specified.Regardless of the procedure selected, the user shall demon-strate by analysis of certified reference materials (CRMs) thatthe particular analytical procedure selected for this purposequalifies (that is, provides acceptable precision and

6、bias) (seeNote 1). The recommended procedures are ones used in theround-robin analyses to determine the precision levels of thistest method.NOTE 1Asimilar approach was used in the performance requirementsfor alternative methods for chemical analysis in Test Methods C114.1.3 The values stated in SI u

7、nits shall be regarded as thestandard.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory li

8、mitations prior to use. For specifichazards, see Section 9.2. Referenced Documents2.1 ASTM Standards:2C114 Test Methods for Chemical Analysis of HydraulicCementC150 Specification for Portland CementC183 Practice for Sampling and the Amount of Testing ofHydraulic CementC219 Terminology Relating to Hy

9、draulic CementC670 Practice for Preparing Precision and Bias Statementsfor Test Methods for Construction MaterialsE29 Practice for Using Significant Digits in Test Data toDetermine Conformance with SpecificationsE691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Tes

10、t Method3. Terminology3.1 Definitions are in accordance with Terminology C219.3.2 Phases (1):33.2.1 alite, ntricalcium silicate (C3S)4modified in com-position and crystal structure by incorporation of foreign ions;occurs typically between 30 to 70 % (by mass) of the portland-cement clinker; and is n

11、ormally either the M1or M3crystalpolymorph, each of which is monoclinic.3.2.2 alkali sulfates, narcanite (K2SO4) may accommo-date Na+, Ca2+, and CO3in solid solution, aphthitalite (K4-x,Nax)SO4with x usually 1 but up to 3), calcium langbeinite(K2Ca2SO43) may occur in clinkers high in K2O, andthenard

12、ite (Na2SO4) in clinkers with high Na/K ratios (1).1This test method is under the jurisdiction of ASTM Committee C01 on Cementand is the direct responsibility of Subcommittee C01.23 on CompositionalAnalysis.Current edition approved Dec. 1, 2011. Published May 2012. Originallyapproved in 1998. Last p

13、revious edition approved in 2006 as C1365 - 98 (2006).DOI: 10.1520/C1365-06R11.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page o

14、nthe ASTM website.3The boldface numbers in parentheses refer to the list of references at the end ofthis standard.4When expressing chemical formulae,C=CaO,S=SiO2,A=Al2O3,F=Fe2O3,M = MgO, S =SO3,andH=H2O.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International,

15、100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.3.2.3 aluminate, ntricalcium aluminate (C3A) modified incomposition and sometimes in crystal structure by incorpora-tion of a substantial proportion of foreign ions; occurs as 2 to15 % (by mass) of the portland-cemen

16、t clinker; is normallycubic when relatively pure and orthorhombic or monoclinicwhen in solid solution with significant amounts of sodium (2).3.2.4 anhydrite, ncalcium sulfate CS! and is orthorhom-bic (see Note 2).NOTE 2Calcium sulfate is added to the clinker during grinding tocontrol setting time, s

17、trength development, and volume stability. Severalphases may form as a result of dehydration of gypsum. The first 1.5molecules of water are lost between 0 and 65 C with minor changes instructure; and, above 95 C, the remaining 0.5 molecules of water are losttransforming the structure to the metastab

18、le g polymorph of anhydrite(sometimes referred to as soluble anhydrite) and subsequently theorthorhombic form (3).3.2.5 bassanite, ncalcium sulfate hemihydrate CSH1/2!and is monoclinic.3.2.6 belite, ndicalcium silicate (C2S) modified in com-position and crystal structure by incorporation of foreign

19、ions;occurs typically as 15 to 45 % (by mass) of the portland-cement clinker as normally the b polymorph, which is mono-clinic. In lesser amounts, other polymorphs can be present.3.2.7 calcite, ncalcium carbonate is trigonal and may bepresent in a cement as an addition or from carbonation of freelim

20、e.3.2.8 ferrite, ntetracalcium aluminoferrite solid solutionof approximate composition C2(A,F) modified in compositionby variation in the Al/Fe ratio and by substantial incorporationof foreign ions as C4AXF2-Xwhere0x1.4; constituting 5to 15 % (by mass) of a portland-cement clinker; and isorthorhombi

21、c.3.2.9 free lime, nfree calcium oxide (C); cubic (see Note3).NOTE 3Free lime (CaO) may be present in clinker and cement butreadily hydrates to form portlandite (Ca(OH)2). Portlandite may carbonateto form calcium carbonate, generally as calcite. Heat-treating a freshly-ground sample to 600 C is usef

22、ul to convert any portlandite back to freelime but will also dehydrate the hydrous calcium sulfate phases (gypsumand bassanite) to anhydrite.3.2.10 gypsum, ncalcium sulfate dihydrate CSH2! and ismonoclinic .3.2.11 periclase, nfree magnesium oxide (M); cubic.3.3 Definitions of Terms Specific to This

23、Standard:3.3.1 Certified Reference Material (CRM), na materialwhose properties (in this case phase abundance, XRD peakposition or intensity, or both) are known and certified (see Note4).NOTE 4NIST Standard Reference Material (SRMt) Clinkers 2686,2687, and 2688 are suitable CRMs for qualification.53.

24、3.2 diffractometer, nthe instrument, an X-ray powderdiffractometer, for determining the X-ray diffraction pattern ofa crystalline powder.3.3.3 phase, na homogeneous, physically distinct, andmechanically separable portion of a material, identifiable by itschemical composition and crystal structure.3.

25、3.3.1 DiscussionPhases in portland-cement clinker andcements that are included in this test method are four majorphases (alite, belite, aluminate, and ferrite) and one minorphase (periclase).3.3.3.2 DiscussionPrecision values are provided for addi-tional phases (gypsum, bassanite, anhydrite, arcanit

26、e, andcalcite). Values for these constituents may be provided usingthis method but are considered informational until suitablecertified reference materials for qualification are available.3.3.4 qualification, nprocess by which a QXRD proce-dure is shown to be valid.3.3.5 Rietveld analysis, nprocess

27、of refining crystallo-graphic and instrument variables to minimize differencesbetween observed and calculated X-ray powder diffractionpatterns for one or more phases, estimating their relativeabundance.3.3.6 standardization, nprocess of determining the rela-tionship between XRD intensity and phase p

28、roportion for oneor more phases (see Note 5).NOTE 5In the literature of X-ray powder diffraction analysis, thestandardization process has been commonly referred to as calibration;however, we have determined that standardization is a more accurate term.3.3.6.1 DiscussionRietveld analysis uses crystal

29、 structuremodels to calculate powder diffraction patterns of phases thatserve as the reference patterns. The pattern-fitting step seeksthe best-fit combination of selected pattern intensities to theraw data. The relative pattern intensities along with thecrystallographic attributes of each phase are

30、 used to calculaterelative abundance. The standardization approach uses pow-dered samples of pure phases to assess the relationship betweendiffraction intensity ratios and mass fraction ratios of two ormore constituents; and is referred to here as the traditionalmethod.3.3.7 X-ray diffraction (XRD),

31、 nthe process by whichX-rays are coherently scattered by electrons in a crystallinematerial.4. Background4.1 This test method assumes general knowledge concern-ing the composition of cement and portland-cement clinker.Necessary background information may be obtained from anumber of references (1, 4)

32、.4.2 This test method also assumes general expertise in XRDand QXRD analysis. Important background information maybe obtained from a number of references (5-10).5. Summary5.1 This test method covers direct determination of theproportion by mass of individual phases in cement or portland-cement clink

33、er using quantitative X-ray powder diffractionanalysis. The following phases are covered by this standard:alite (tricalcium silicate, C3S), belite (dicalcium silicate C2S),aluminate (tricalcium aluminate, C3A), ferrite (tetracalcium5Portland cement clinker SRMst from the Standard Reference MaterialP

34、rogram, National Institute of Standards and Technology.C1365 06 (2011)2aluminoferrite, C4AF), periclase (magnesium oxide, M), arcan-ite (potassium sulfate, KS!, gypsum (calcium sulfate dihy-drate, CSH2!, bassanite (calcium sulfate hemihydrate,CSH1/2!, anhydrite (calcium sulfate CS!, and calcite (cal

35、-cium carbonate, CaCO3.A QXRD test procedure includes some or all of the follow-ing: (a) specimen preparation; (b) data collection and phaseidentification; (c) standardization (for the standardization ap-proach); (d) collecting a set of crystal structure models forrefinement (for the Rietveld approa

36、ch); (e) use of an internal orexternal standard (to correct for various effects on intensitybesides phase proportion); (f) analysis of the sample (in whichthe powder diffraction pattern is measured and/or the intensityof selected XRD peaks or patterns are measured); and (g)calculation of the proport

37、ion of each phase.5.2 This test method does not specify details of the QXRDtest procedure. The user must demonstrate by analysis ofcertified reference materials that the particular analytical pro-cedure selected for this purpose provides acceptable levels ofprecision and bias. Two recommended proced

38、ures (the Riet-veld approach and the traditional approach used to determinethe acceptable levels of precision and bias) are given inAppendix X1 and Appendix X2.6. Significance and Use6.1 This test method allows direct determination of theproportion of some individual phases in cement or portland-cem

39、ent clinker. Thus it provides an alternative to the indirectestimation of phase proportion using the equations in Specifi-cation C150 (Annex A1).6.2 This test method assumes that the operator is qualified tooperate an X-ray diffractometer and to interpret X-ray diffrac-tion spectra.6.3 This test met

40、hod may be used as part of a quality controlprogram in cement manufacturing.6.4 This test method may be used in predicting propertiesand performance of hydrated cement and concrete that are afunction of phase composition.6.5 QXRD provides a bulk analysis (that is, the weightedaverage composition of

41、several grams of material). Therefore,results may not agree precisely with results of microscopicalmethods.7. Apparatus7.1 X-Ray DiffractometerThe X-ray diffractometer allowsmeasurement of the X-ray diffraction pattern from which thecrystalline phases within the sample may be qualitativelyidentified

42、 and the proportion of each phase may be quantita-tively determined. X-ray diffractometers are manufacturedcommercially and a number of instruments are available. Thesuitability of the diffractometer for this test method shall beestablished using the qualification procedure outlined in thistest meth

43、od.8. Materials8.1 Standardization PhasesThe use of standardizationphases is recommended for establishing the intensity ratio/mass ratio relationships when using the traditional quantitativemethod. These phases must usually be synthesized (12, 13).8.2 CRM ClinkerThe use of three CRM clinkers isrequi

44、red to qualify the QXRD procedure.8.3 Internal StandardThe use of an internal standard isrecommended for the standardization approach. Suitable ma-terials include chemical reagents (see 8.4) or CRMs (seeAppendix X1).8.4 Reagent ChemicalsReagent grade chemicals, if usedeither as an internal standard

45、or during chemical extraction ofcertain phases, shall meet the specifications of the Committeeon Analytical Reagents of the American Chemical Societywhere such specifications are available.6Other grades may beused, provided it is first ascertained that the chemical issufficiently pure to permit its

46、use without lessening the accu-racy of the determination.9. Hazards9.1 The importance of careful and safe operation of anX-ray diffractometer cannot be overemphasized. X-rays areparticularly hazardous. An X-ray diffractometer must be oper-ated safely to avoid serious injury or death. The X-rays areg

47、enerated by high voltages, perhaps as high as 55 kV peak,requiring care to avoid serious electric shock. Klug andAlexander (6) (pp. 5860) state, “The responsibility for safeoperation rests directly on the individual operator” (italics aretheirs).10. Sampling and Sample Preparation10.1 Take samples o

48、f cement in accordance with the appli-cable provisions of Practice C183. Take samples of portland-cement clinker so as to be representative of the material beingtested.10.2 Prepare samples as required for the specific analyticalprocedure (see Appendix X2).11. Qualification and Assessment11.1 Qualifi

49、cation of Test Procedure:11.1.1 When analytical data obtained in accordance withthis test method are required, any QXRD test procedure thatmeets the requirements described in this section may be used.11.1.2 Prior to use for analysis of cement or portland-cement clinker, qualify the QXRD test procedure for theanalysis. Maintain records that include a description of theQXRD procedure and the qualification data (or, if applicable,re-qualification data). Make these records available to thepurchaser if requested in the contract or order.

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1