ImageVerifierCode 换一换
格式:PDF , 页数:5 ,大小:97.81KB ,
资源ID:465410      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-465410.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM C165-2007(2012) Standard Test Method for Measuring Compressive Properties of Thermal Insulations《测量隔热材料压缩特性的标准试验方法》.pdf)为本站会员(progressking105)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM C165-2007(2012) Standard Test Method for Measuring Compressive Properties of Thermal Insulations《测量隔热材料压缩特性的标准试验方法》.pdf

1、Designation: C165 07 (Reapproved 2012)Standard Test Method forMeasuring Compressive Properties of Thermal Insulations1This standard is issued under the fixed designation C165; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the yea

2、r of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope1.1 This test method covers two proc

3、edures for determiningthe compressive resistance of thermal insulations.1.1.1 Procedure A covers thermal insulations having anapproximate straight-line portion of a load-deformation curve,with or without an identifiable yield point as shown in Figs. 1and 2. Such behavior is typical of most rigid boa

4、rd orblock-type insulations.1.1.2 Procedure B covers thermal insulations that becomeincreasingly more stiff as load is increased, as shown in Fig. 3.Such behavior is typical of fibrous batt and blanket insulationsthat have been compressed previously to at least the samedeformation by compression pac

5、kaging or mechanical soften-ing.1.2 It is recognized that the classification of materials underProcedures A and B shall not hold in all cases. For example,some batt or blanket materials that have not been compressionpackaged will exhibit behavior more typical of ProcedureAfortheir first loadings.Als

6、o, some higher density fibrous insulationboards that have been precompressed will exhibit load-deformation curves more typical of Procedure B. There willalso be thermal insulations with load-deformation curves thatfollow none of the three types shown here; that is, curves withno straight-line portio

7、n, curves with compaction areas, andcurves that change from negative to positive slope.1.3 This test method does not cover reflective or loose fillinsulations.1.4 The values stated in inch-pound units are to be regardedas the standard. The values given in parentheses are forinformation only.1.5 This

8、 standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents

9、2.1 ASTM Standards:2C167 Test Methods for Thickness and Density of Blanket orBatt Thermal InsulationsC168 Terminology Relating to Thermal InsulationC240 Test Methods of Testing Cellular Glass InsulationBlockE4 Practices for Force Verification of Testing MachinesE177 Practice for Use of the Terms Pre

10、cision and Bias inASTM Test MethodsE691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test Method3. Terminology3.1 Definitions:3.1.1 Terminology C168 applies to the terms used in thismethod.3.2 Additional terms are defined as follows:3.3 compressive deformationthe d

11、ecrease in specimenthickness by a compressive load.3.4 compressive loadthe compressive force carried by thetest specimen at any given moment.3.5 compressive modulus of elasticitythe ratio of thecompressive load per unit of original area to the correspondingdeformation per unit of original thickness

12、below the propor-tional limit of a material.3.6 compressive resistancethe compressive load per unitof original area at a specified deformation. For those materialswhere the specified deformation is regarded as indicating thestart of complete failure, the compressive resistance mayproperly be called

13、the compressive strength.3.7 proportional limit in compressionthe greatest com-pressive load that a material is capable of sustaining withoutany deviation from proportionality of load to deformation.1This test method is under the jurisdiction ofASTM Committee C16 on ThermalInsulation and is the dire

14、ct responsibility of Subcommittee C16.32 on MechanicalProperties.Current edition approved Sept. 1, 2012. Published November 2012. Originallyapproved in 1941. Last previous edition approved in 2007 as C165 07. DOI:10.1520/C0165-07R12.2For referenced ASTM standards, visit the ASTM website, www.astm.or

15、g, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13.8 yield poin

16、t in compressionthe load at the first point onthe load-deformation curve at which an increase in deformationoccurs without an increase in load.4. Significance and Use4.1 In providing Procedures A and B, it is recognized thatdifferent types of thermal insulation will exhibit significantlydifferent be

17、havior under compressive load. Data must usuallybe obtained from a complete load-deformation curve, and theuseful working range normally corresponds to only a portion ofthe curve. The user is cautioned against use of the product inthe range beyond which the product is permanently damaged orpropertie

18、s are adversely affected.4.2 Load-deformation curves provide useful data for re-search and development, quality control, specification accep-tance or rejection, and for other special purposes. Standardloading rates shall not be used arbitrarily for all purposes; theeffects of impact, creep, fatigue,

19、 and repeated cycling must beconsidered. All load-deformation data shall be reviewed care-fully for applicability prior to acceptance for use in engineeringdesigns differing widely in load, load application rate, andmaterial dimensions involved.5. Apparatus5.1 Testing Machine Standard hydraulic or m

20、echanicalcompression testing machine of suitable capacity, and capableof operating at the specified constant rate of motion of themovable head. Verify the accuracy of the testing machine inaccordance with Practices E4.5.2 Loading Surfaces Surfaces shall be at least 1.0 in.(25.4 mm) greater in all di

21、rections than the test specimens, andshall be designed to remain plane within 60.003 in./ft (60.25mm/m) under all conditions of load.5.2.1 Procedure A A preferred size is 8.0 in. (203 mm)square. One surface plate, either the upper or lower, shall bemounted rigidly with its surface perpendicular to t

22、he testingmachine axis. The other surface plate shall be self-aligning,suspended by a spherical bearing block as shown in Fig. 4.5.2.2 Procedure B A preferred size is 1.0 ft2(0.093 m2)inarea, either 12 in. (305 mm) square or 13.54 in. (344 mm) indiameter. Both plates shall be mounted rigidly so that

23、 thesurfaces are parallel to each other and perpendicular to thetesting machine axis.5.3 Load Indicator Load-indicating mechanism that willpermit measurements with an accuracy of 61 % of total load.FIG. 1 Procedure AStraight Line Portion with Definite YieldPointFIG. 2 Procedure AStraight Line Portio

24、n but no Definite YieldPointFIG. 3 Procedure BIncreasing StiffnessFIG. 4 Spherical Bearing Block for Compressive Strength TestC165 07 (2012)25.4 Deformation IndicatorDeformation-indicatingmechanism that measures crosshead movement, or a simple jigthat will permit direct measurements, with an accurac

25、y of60.1 % of specimen thickness. When crosshead movement isused to measure deformation, use a calibration curve unless ithas been shown that under the conditions of test the crossheadindicator gives an accurate measure of specimen deformation.5.5 Measuring Instruments:5.5.1 Dial Gage Comparator, wi

26、th a circular foot having aminimum area of 1.00 in.2(645 mm2) and capable of measur-ing thickness to 60.002 in. (60.05 mm).5.5.2 Steel Rule, capable of measuring to 60.01 in. (0.25mm).5.5.3 Depth Gage, pin-type, as specified in Test MethodsC167 for Procedure B only.5.6 Drying or Conditioning Equipme

27、nt (see 6.5):5.6.1 Drying Oven, temperatures to 250F (121C).5.6.2 Desiccator, using dry calcium chloride or silica geldesiccant.5.6.3 Conditioned Space, at temperature of 73.4 6 3.6F(23 6 2C), and relative humidity of 50 6 5%.6. Test Specimens6.1 Specimen Size:6.1.1 Procedure A specimens shall prefe

28、rably be square orcircular with a minimum area of 4 in.2(2580 mm2) and apreferred width or diameter of 6 in. (150 mm). The minimumthickness shall be12 in. (12.7 mm) and the maximum thicknessshall be no greater than the width or diameter.NOTE 1See Test Methods C240 for preparation of cellular glass t

29、estspecimens.6.1.2 Procedure B specimens shall preferably be square orcircular with a minimum width or diameter of 6.0 in. (153mm). The minimum thickness shall be 1.0 in. (25.4 mm) andthe maximum thickness shall be no greater than the width ordiameter.NOTE 2For some materials, the specimen thickness

30、 has considerableeffect on the deformation at yield, the compressive resistance, and thecompressive modulus. Therefore, use the same thickness for comparisonswith other test specimens. The thinner the specimen, the higher thecompressive resistance and the lower the deformation at yield.6.2 The numbe

31、r of specimens to be tested and the samplingplan shall conform to materials specifications where appli-cable. In the absence of such specifications the minimumnumber of specimens shall be at least four, chosen at random torepresent the lot.6.3 The specimens shall be cut from larger blocks orirregula

32、r shapes in such a manner as to preserve as many of theoriginal surfaces as possible. The bearing faces of the testspecimens shall be plane, parallel to each other, and perpen-dicular to the sides. Where the original surfaces of the block aresubstantially plane and parallel, no special preparation o

33、f thesurfaces will usually be necessary. In preparing specimensfrom pieces of irregular shape, any means that will produce aspecimen with plane and parallel faces without weakening thestructure of the specimen shall be used.6.4 The specimens shall be prepared so that the direction ofloading will be

34、the same as that on the insulation in service. Ifthe direction of loading in service is unknown and the materialis suspected of being anisotropic, different sets of test speci-mens shall be prepared with compression axes parallel to thedifferent directions of loading that might occur.6.5 The specime

35、ns shall be dried and conditioned prior totest, following applicable specifications for the material. If thematerial is affected adversely by oven temperatures, the speci-mens shall be conditioned for not less than 40 h at 73.4 6 1.8F(23 6 1C), and 50 6 5 % relative humidity before testing. Inthe ab

36、sence of definitive drying specifications, the specimensshall be dried in an oven at 215 to 250F (102 to 121C) toconstant mass and held in a desiccator to cool to roomtemperature before testing. Where circumstances or require-ments preclude compliance with these conditioningprocedures, exceptions ag

37、reed upon between the manufacturerand the purchaser shall be specifically listed in the test report.7. Procedures7.1 Procedure A:7.1.1 Measure the specimen dimensions within 61 %. Eachdimension shall be the average of at least two measurementstaken on each specimen face. Use the steel rule and the d

38、ialgage comparator as appropriate.7.1.2 Place the specimen between the loading surfaces ofthe testing machine, taking care that the centerline of thespecimen coincides with the centerline of the testing machineso that the load will be uniformly distributed. The self-aligningsurface shall be approxim

39、ately parallel to the fixed plate. Keepthe spherical bearing seat well lubricated to ensure freemovement.7.1.3 Adjust the crosshead speed to the value specified forthe material being tested. This shall not exceed the range from0.01 to 0.5 in./min (0.25 to 12.7 mm/min) for each 1 in. (25.4mm) of spec

40、imen thickness. In the absence of suchspecification, the speed shall be 0.05 in./min (1.27 mm/min) foreach 1 in. of specimen thickness.NOTE 3The speed of crosshead travel will have considerable effect onthe compressive resistance value. In general, higher crosshead speedsusually result in higher com

41、pressive resistance values. Take this intoaccount in selecting crosshead speed other than standard when comparingdifferent types of thermal insulation.7.1.4 To reduce the time for the loading head to contact thetest specimen, the crosshead shall be moved at a rapid untilcontact with the specimen is

42、made. This will cause a slightpreload to be applied to the specimen. Change the loadingspeed to the required value once contact is made. This preloadshall not be more than 2% of the load at the final deformation.NOTE 4If this test method is used in specifications or by specifiers tocharacterize the

43、compressive resistance of a material, any preload valueused must be specified.7.1.5 Compress the specimen to the desired deformation.Record the loads and deformations at points that will ad-equately describe a load-deformation curve.7.2 Procedure B:C165 07 (2012)37.2.1 Measure the specimen face dime

44、nsions within 61%using the steel rule. Each dimension shall be the average of atleast two measurements taken on each specimen face.7.2.2 Measure the specimen thickness to 61 %. Use thepin-type depth gage and follow Test Methods C167 if thematerial is pin-penetrable. If it is not, use the dial gageco

45、mparator. Average three measurements.7.2.3 Place the specimen between the loading surfaces ofthe testing machine, taking care that the centerlines of thespecimen and the testing machine coincide.7.2.4 Adjust the crosshead speed to a maximum of 5 in./min(125 mm/min), but follow material specification

46、s if a differentspeed is specified (see Note 3 above).7.2.5 Compress the specimen to the desired deformation ofeither 10 or 25 % of the thickness measured in 7.2.2 or of thenominal thickness if so specified. To reduce variability insample sets with densities greater than 3 lbs/ft3(48 kg/m3), theinit

47、ial deformation point on the load curve must be chosen at afixed preload. Preload values shall be less than 2 % of the loadat 10 % deformation.NOTE 5If this test method is used in specifications or by specifiers tocharacterize the compressive resistance of a material, any preload value tobe used mus

48、t be specified.8. Calculations8.1 Procedure A:8.1.1 Construct a load-deformation curve.8.1.2 Using a straightedge, carefully extend to the zero loadline the steepest straight portion of the load-deformation curve.This establishes the “zero deformation point.” Measure alldistances for deformation cal

49、culations from this point (Point 0in Figs. 5 and 6).8.1.3 Measure from Point 0 along the zero load line adistance representing 5 %, 10 %, or other specified deforma-tion. At that point (Point M in Figs. 5 and 6), draw a verticalline intersecting the load deformation curve at Point P. If thereis no yield point before Point P (as in Fig. 6), read the load atPoint P. If there is a yield point before Point P (as Point L inFig. 5), read the load and measure the percent deformation(distance O-R) at the yield point.8.1.4 Calculate the compressive resistance a

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1