ImageVerifierCode 换一换
格式:PDF , 页数:6 ,大小:107.66KB ,
资源ID:466537      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-466537.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM C42 C42M-2010a Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete《混凝土钻芯样和截梁样获取和测试的标准试验方法》.pdf)为本站会员(arrownail386)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM C42 C42M-2010a Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete《混凝土钻芯样和截梁样获取和测试的标准试验方法》.pdf

1、Designation: C42/C42M 10aAmerican Association StateHighway and Transportation Officials StandardAASHTO No.: T24Standard Test Method forObtaining and Testing Drilled Cores and Sawed Beams ofConcrete1This standard is issued under the fixed designation C42/C42M; the number immediately following the des

2、ignation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use b

3、y agencies of the Department of Defense.1. Scope*1.1 This test method covers obtaining, preparing, and test-ing cores drilled from concrete for length or compressivestrength or splitting tensile strength determinations.NOTE 1Appendix X1 provides recommendations for obtaining andtesting sawed beams f

4、or flexural performance.1.2 The values stated in either SI units or inch-pound unitsare to be regarded separately as standard. The values stated ineach system may not be exact equivalents; therefore, eachsystem shall be used independently of the other. Combiningvalues from the two systems may result

5、 in non-conformancewith the standard.1.3 The text of this standard references notes and footnotesthat provide explanatory material. These notes and footnotes(excluding those in tables and figures) shall not be consideredas requirements of the standard.1.4 This standard does not purport to address th

6、e safetyconcerns, if any, associated with its use. It is the responsibilityof the user of this standard to establish appropriate safety andhealth practices and determine the applicability of regulatorylimitations prior to use.2. Referenced Documents2.1 ASTM Standards:2C39/C39M Test Method for Compre

7、ssive Strength of Cy-lindrical Concrete SpecimensC78 Test Method for Flexural Strength of Concrete (UsingSimple Beam with Third-Point Loading)C174/C174M Test Method for Measuring Thickness ofConcrete Elements Using Drilled Concrete CoresC496/C496M Test Method for Splitting Tensile Strength ofCylindr

8、ical Concrete SpecimensC617 Practice for Capping Cylindrical Concrete SpecimensC642 Test Method for Density, Absorption, and Voids inHardened ConcreteC670 Practice for Preparing Precision and Bias Statementsfor Test Methods for Construction MaterialsC823 Practice for Examination and Sampling of Hard

9、enedConcrete in ConstructionsC1231/C1231M Practice for Use of Unbonded Caps inDetermination of Compressive Strength of Hardened Con-crete Cylinders2.2 ACI Standards:3318 Building Code Requirements for Structural Concrete3. Significance and Use3.1 This test method provides standardized procedures for

10、obtaining and testing specimens to determine the compressive,splitting tensile, and flexural strength of in-place concrete.3.2 Generally, test specimens are obtained when doubtexists about the in-place concrete quality due either to lowstrength test results during construction or signs of distress i

11、nthe structure. Another use of this method is to provide strengthinformation on older structures.3.3 Concrete strength is affected by the location of theconcrete in a structural element, with the concrete at the bottomtending to be stronger than the concrete at the top. Corestrength is also affected

12、 by core orientation relative to thehorizontal plane of the concrete as placed, with strengthtending to be lower when measured parallel to the horizontalplane.4These factors shall be considered in planning thelocations for obtaining concrete samples and in comparingstrength test results.3.4 The stre

13、ngth of concrete measured by tests of cores isaffected by the amount and distribution of moisture in thespecimen at the time of test. There is no standard procedure tocondition a specimen that will ensure that, at the time of test,it will be in the identical moisture condition as concrete in the1Thi

14、s test method is under the jurisdiction of ASTM Committee C09 onConcrete and Concrete Aggregates and is the direct responsibility of SubcommitteeC09.61 on Testing for Strength.Current edition approved Dec. 15, 2010. Published January 2011. Originallyapproved in 1921. Last previous edition approved i

15、n 2010 as C42/C42M10. DOI:10.1520/C0042_C0042M-10a.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available

16、 from American Concrete Institute (ACI), P.O. Box 9094, FarmingtonHills, MI 48333-9094, http:/www.concrete.org.4Neville, A., “Core Tests: Easy to Perform, Not Easy to Interpret,” ConcreteInternational, Vol. 23, No. 11, November 2001, pp. 59-68.1*A Summary of Changes section appears at the end of thi

17、s standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.structure. The moisture conditioning procedures in this testmethod are intended to provide reproducible moisture condi-tions that minimize within-laboratory and between-labora

18、toryvariations and to reduce the effects of moisture introducedduring specimen preparation.3.5 There is no universal relationship between the compres-sive strength of a core and the corresponding compressivestrength of standard-cured molded cylinders. The relationshipis affected by many factors such

19、 as the strength level of theconcrete, the in-place temperature and moisture history, and thestrength gain characteristics of the concrete. Historically, it hasbeen assumed that core strengths are generally 85 % of thecorresponding standard-cured cylinder strengths, but this is notapplicable to all

20、situations. The acceptance criteria for corestrength are to be established by the specifier of the tests. ACI318 provides core strength acceptance criteria for new con-struction.4. Apparatus4.1 Core Drill, for obtaining cylindrical core specimenswith diamond impregnated bits attached to a core barre

21、l.4.2 Saw, for trimming ends of cores. The saw shall have adiamond or silicon-carbide cutting edge and shall be capable ofcutting cores without introducing cracks or dislodging aggre-gate particles.5. Sampling5.1 General:5.1.1 Samples of hardened concrete for use in the prepara-tion of strength test

22、 specimens shall not be taken until theconcrete is strong enough to permit sample removal withoutdisturbing the bond between the mortar and the coarse aggre-gate (see Note 2 and Note 3). When preparing strength testspecimens from samples of hardened concrete, samples thathave been damaged during rem

23、oval shall not be used unless thedamaged portion(s) are removed and the lengths of resultingtest specimens satisfy the minimum length-diameter ratiorequirement in 7.2. Samples of defective or damaged concretethat cannot be tested shall be reported along with the reasonthat prohibits use of the sampl

24、e for preparing strength testspecimens.NOTE 2Practice C823 provides guidance on the development of asampling plan for concrete in constructions.NOTE 3It is not possible to specify a minimum age when concrete isstrong enough to withstand damage during removal, because the strengthat any age depends o

25、n the curing history and strength grade of theconcrete. If time permits, the concrete should not be removed before it is14 days old. If this is not practical, removal of concrete can proceed if thecut surfaces do not display erosion of the mortar and the exposed coarseaggregate particles are embedde

26、d firmly in the mortar. In-place testmethods may be used to estimate the level of strength development priorto attempting removal of concrete samples.5.1.2 Specimens containing embedded reinforcement shallnot be used for determining compressive, splitting tensile, orflexural strength.5.2 Core Drilli

27、ngWhen a core will be tested to measureconcrete strength, the core specimen shall be drilled perpen-dicular to the surface and not near formed joints or obviousedges of a unit of deposit. Record and report the approximateangle between the longitudinal axis of the drilled core and thehorizontal plane

28、 of the concrete as placed. A specimen drilledperpendicular to a vertical surface, or perpendicular to asurface with a batter, shall be taken from near the middle of aunit of deposit when possible. When obtained for purposesother than determination of strength, drill cores in accordancewith the inst

29、ructions provided by the specifier.5.3 Slab RemovalRemove a slab sufficiently large tosecure the desired test specimens without the inclusion of anyconcrete that has been cracked, spalled, undercut, or otherwisedamaged.DRILLED CORES6. Measuring the Length of Drilled Cores6.1 Cores for determining th

30、e thickness of pavements, slabs,walls or other structural elements shall have a diameter of atleast 94 mm 3.70 in. when the lengths of such cores arestipulated to be measured in accordance with Test MethodC174/C174M. When core length for determining the thicknessof a member is not required to be mea

31、sured in accordance withTest Method C174/C174M, core diameter shall be as directedby specifier of tests.6.2 For cores that are not intended for determining structuraldimensions, measure the longest and shortest lengths on the cutsurface along lines parallel to the core axis. Record the averagelength

32、 to the nearest 5 mm 14 in.7. Cores for Compressive Strength7.1 DiameterThe diameter of core specimens for thedetermination of compressive strength in load bearing struc-tural members shall be at least 94 mm 3.70 in. For non-loadbearing structural members or when it is impossible to obtaincores with

33、 length-diameter ratio (L/D) greater than or equal to1, core diameters less than 94 mm 3.70 in. are not prohibited(see Note 4). For concrete with nominal maximum aggregatesize greater than or equal to 37.5 mm 112 in., the corediameters shall be as directed by the specifier of the tests (seeNote 5).N

34、OTE 4The compressive strengths of nominal 50-mm 2-in. diam-eter cores are known to be somewhat lower and more variable than thoseof nominal 100-mm 4-in. diameter cores. In addition, smaller diametercores appear to be more sensitive to the effect of the length-diameterratio.5NOTE 5The preferred minim

35、um core diameter is three times thenominal maximum size of the coarse aggregate, but it should be at leasttwo times the nominal maximum size of the coarse aggregate.7.2 LengthThe preferred length of the capped or groundspecimen is between 1.9 and 2.1 times the diameter. If the ratioof the length to

36、the diameter (L/D) of the core exceeds 2.1,reduce the length of the core so that the ratio of the capped orground specimen is between 1.9 and 2.1. Core specimens withlength-diameter ratios equal to or less than 1.75 requirecorrections to the measured compressive strength (see 7.9.1).Astrength correc

37、tion factor is not required for L/D greater than5Bartlett, F.M. and MacGregor, J.G., “Effect of Core Diameter on Concrete CoreStrengths,” ACI Materials Journal, Vol. 91, No. 5, September-October 1994, pp.460-470.C42/C42M 10a21.75. A core having a maximum length of less than 95 % of itsdiameter befor

38、e capping or a length less than its diameter aftercapping or end grinding shall not be tested.7.3 Moisture ConditioningTest cores after moisture con-ditioning as specified in this test method or as directed by thespecifier of the tests. The moisture conditioning proceduresspecified in this test meth

39、od are intended to preserve themoisture of the drilled core and to provide a reproduciblemoisture condition that minimizes the effects of moisturegradients introduced by wetting during drilling and specimenpreparation.7.3.1 After cores have been drilled, wipe off surface drillwater and allow remaini

40、ng surface moisture to evaporate.When surfaces appear dry, but not later than 1 h after drilling,place cores in separate plastic bags or nonabsorbent containersand seal to prevent moisture loss. Maintain cores at ambienttemperature, and protect cores from exposure to direct sunlight.Transport the co

41、res to the testing laboratory as soon aspossible. Keep cores in the sealed plastic bags or nonabsorbentcontainers at all times except during end preparation and for amaximum time of2htopermit capping before testing.7.3.2 If water is used during sawing or grinding of coreends, complete these operatio

42、ns as soon as possible, but nolater than 2 days after drilling of cores unless stipulatedotherwise by the specifier of tests. After completing endpreparation, wipe off surface moisture, allow the surfaces todry, and place the cores in sealed plastic bags or nonabsorbentcontainers. Minimize the durat

43、ion of exposure to water duringend preparation.7.3.3 Allow the cores to remain in the sealed plastic bags ornonabsorbent containers for at least 5 days after last beingwetted and before testing, unless stipulated otherwise by thespecifier of tests.NOTE 6The waiting period of at least 5 days is inten

44、ded to reducemoisture gradients introduced when the core is drilled or wetted duringsawing or grinding.7.3.4 When direction is given to test cores in a moisturecondition other than achieved by conditioning according to7.3.1, 7.3.2, and 7.3.3, report the alternative procedure.7.4 Sawing of EndsThe en

45、ds of core specimens to betested in compression shall be flat, and perpendicular to thelongitudinal axis in accordance with Test Method C39/C39M.If necessary, saw the ends of cores that will be capped so thatprior to capping, the following requirements are met:7.4.1 Projections, if any, shall not ex

46、tend more than 5 mm0.2 in. above the end surfaces.7.4.2 The end surfaces shall not depart from perpendicular-ity to the longitudinal axis by a slope of more than 1:8d or1:0.3d where d is the average core diameter in mm orinches.7.5 DensityWhen required by the specifier of the tests,determine the den

47、sity by weighing the core before capping anddividing the mass by the volume of the core calculated from theaverage diameter and length. Alternatively, determine thedensity from the mass in air and submerged mass in accordancewith Test Method C642. After submerged weighing, dry coresin accordance wit

48、h 7.3.2 and store in sealed plastic bags ornonabsorbent containers for at least 5 days before testing.7.6 CappingIf the ends of the cores do not conform to theperpendicularity and planeness requirements of Test MethodC39/C39M, they shall be sawed or ground to meet thoserequirements or capped in acco

49、rdance with Practice C617.Ifcores are capped in accordance with Practice C617, thecapping device shall accommodate actual core diameters andproduce caps that are concentric with the core ends. Measurecore lengths to the nearest 2 mm 0.1 in. before capping.Unbonded caps in accordance with Practice C1231/C1231Mare not permitted.7.7 MeasurementBefore testing, measure the length of thecapped or ground specimen to the nearest 2 mm 0.1 in. anduse this length to compute the length-diameter (L/D) ratio.Determine the average diameter by averaging tw

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1