ImageVerifierCode 换一换
格式:PDF , 页数:12 ,大小:346.87KB ,
资源ID:508237      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-508237.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM C755-2010e1 Standard Practice for Selection of Water Vapor Retarders for Thermal Insulation《选择隔热用水蒸气缓凝剂的标准实施规程》.pdf)为本站会员(amazingpat195)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM C755-2010e1 Standard Practice for Selection of Water Vapor Retarders for Thermal Insulation《选择隔热用水蒸气缓凝剂的标准实施规程》.pdf

1、Designation: C755 101Standard Practice forSelection of Water Vapor Retarders for Thermal Insulation1This standard is issued under the fixed designation C755; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision

2、. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTETable 2 and Table X1.1 were editorially corrected in September 2015.1. Scope1.1 This practice outlines factors to be considered, describes

3、design principles and procedures for water vapor retarderselection, and defines water vapor transmission values appro-priate for established criteria. It is intended for the guidance ofdesign engineers in preparing vapor retarder application speci-fications for control of water vapor flow through th

4、ermalinsulation. It covers commercial and residential building con-struction and industrial applications in the service temperaturerange from 40 to +150F (40 to +66C). Emphasis is placedon the control of moisture penetration by choice of the mostsuitable components of the system.1.2 The values state

5、d in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units that are provided for information onlyand are not considered standard.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use.

6、 It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2C168 Terminology Relating to Thermal InsulationC647 Guide to Properties and T

7、ests of Mastics and CoatingFinishes for Thermal InsulationC921 Practice for Determining the Properties of JacketingMaterials for Thermal InsulationC1136 Specification for Flexible, Low Permeance VaporRetarders for Thermal InsulationE96/E96M Test Methods for Water Vapor Transmission ofMaterials3. Ter

8、minology3.1 For definitions of terms used in this practice, refer toTerminology C168.4. Significance and Use4.1 Experience has shown that uncontrolled water entry intothermal insulation is the most serious factor causing impairedperformance. Water entry into an insulation system may bethrough diffus

9、ion of water vapor, air leakage carrying watervapor, and leakage of surface water. Application specificationsfor insulation systems that operate below ambient dew-pointtemperatures should include an adequate vapor retarder sys-tem. This may be separate and distinct from the insulationsystem or may b

10、e an integral part of it. For selection ofadequate retarder systems to control vapor diffusion, it isnecessary to establish acceptable practices and standards.4.2 Vapor Retarder FunctionWater entry into an insula-tion system may be through diffusion of water vapor, airleakage carrying water vapor, a

11、nd leakage of surface water.The primary function of a vapor retarder is to control move-ment of diffusing water vapor into or through a permeableinsulation system. The vapor retarder system alone is seldomintended to prevent either entry of surface water or air leakage,but it may be considered as a

12、second line of defense.4.3 Vapor Retarder PerformanceDesign choice of retard-ers will be affected by thickness of retarder materials, substrateto which applied, the number of joints, available length andwidth of sheet materials, useful life of the system, andinspection procedures. Each of these fact

13、ors will have an effecton the retarder system performance and each must be consid-ered and evaluated by the designer.4.3.1 Although this practice properly places major emphasison selecting the best vapor retarders, it must be recognized thatfaulty installation techniques can impair vapor retarder pe

14、rfor-mance. The effectiveness of installation or application tech-niques in obtaining design water vapor transmission (WVT)performance must be considered in the selection of retardermaterials.1This practice is under the jurisdiction of ASTM Committee C16 on ThermalInsulation and is the direct respon

15、sibility of Subcommittee C16.33 on InsulationFinishes and Moisture.Current edition approved Oct. 1, 2010. Published November 2010. Originallyapproved in 1973. Last previous edition approved in 2003 as C755 03. DOI:10.1520/C0755-10E01.2For referenced ASTM standards, visit the ASTM website, www.astm.o

16、rg, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States14.3.2 As an e

17、xample of the evaluation required, it may beimpractical to specify a lower “as installed” value, becausedifficulties of field application often will preclude “as installed”attainment of the inherent WVT values of the vapor retardermaterials used. The designer could approach this requirementby select

18、ing a membrane retarder material that has a lowerpermeance manufactured in 5-ft (1.5-m) width or a sheetmaterial 20 ft (6.1 m) wide having a higher permeance. Thesealternatives may be approximately equivalent on an installedbasis since the wider material has fewer seams and joints.4.3.3 For another

19、example, when selecting mastic or coatingretarder materials, the choice of a product having a permeancevalue somewhat higher than the lowest obtainable might bejustified on the basis of its easier application techniques, thusensuring “as installed” system attainment of the specifiedpermeance. The pe

20、rmeance of the substrate and its effects onthe application of the retarder material must also be consideredin this case.5. Factors to Be Considered in Choosing Water VaporRetarders5.1 Water Vapor Pressure Difference is the difference in thepressure exerted on each side of an insulation system orinsu

21、lated structure that is due to the temperature and moisturecontent of the air on each side of the insulated system orstructure. This pressure difference determines the direction andmagnitude of the driving force for the diffusion of the watervapor through the insulated system or structure. In genera

22、l, fora given permeable structure, the greater the water vaporpressure difference, the greater the rate of diffusion. Watervapor pressure differences for specific conditions can becalculated by numerical methods or from psychrometric tablesshowing thermodynamic properties of water at saturation.5.1.

23、1 Fig. 1 shows the variation of dew-point temperaturewith water vapor pressure.5.1.2 Fig. 2 illustrates the magnitude of water vapor pres-sure differences for four ambient air conditions and cold-sideoperating temperatures between +40 and 40F (+4.4and 40C).5.1.3 At a stated temperature the water vap

24、or pressure isproportional to relative humidity but at a stated relativehumidity the vapor pressure is not proportional to temperature.5.1.4 Outdoor design conditions vary greatly dependingupon geographic location and season and can have a substantialimpact on system design requirements. It is there

25、fore necessaryto calculate the actual conditions rather than rely on estimates.As an example, consider the cold-storage application shown inTable 1. The water vapor pressure difference for the facilitylocated in Biloxi, MS is 0.96 in. Hg (3.25 kPa) as compared toa 0.001 in. Hg (3 Pa) pressure differ

26、ence if the facility waslocated in International Falls, MN. In the United States thedesign dew point temperature seldom exceeds 75F (24C)(1).33The boldface numbers in parentheses refer to the list of references at the end ofthis practice.FIG. 1 Dew Point (Dp) Relation to Water Vapor PressureC755 101

27、25.1.5 The expected vapor pressure difference is a veryimportant factor that must be based on realistic design data (notestimated) to determine vapor retarder requirements.5.2 Service ConditionsThe direction and magnitude ofwater vapor flow are established by the range of ambientatmospheric and desi

28、gn service conditions. These conditionsnormally will cause vapor flow to be variable in magnitude,and either unidirectional or reversible.5.2.1 Unidirectional flow exists where the water vaporpressure is constantly higher on one side of the system. Withbuildings operated for cold storage or frozen f

29、ood storage, thesummer outdoor air conditions will usually determine vaporretarder requirements, with retarder placement on the outdoor(warmer) side of the insulation. In heating only buildings forhuman occupancy, the winter outdoor air conditions wouldrequire retarder placement on the indoor (warme

30、r) side of theinsulation. In cooling only buildings for human occupancy(that is, tropic and subtropic locations), the summer outside airconditions would require retarder placement on the outdoor(warmer) side.5.2.2 Reversible flow can occur where the vapor pressuremay be higher on either side of the

31、system, changing usuallybecause of seasonal variations. The inside temperature andvapor pressure of a refrigerated structure may be below theoutside temperature and vapor pressure at times, and above theoutside temperature and vapor pressure at other times. Coolerrooms with operating temperatures in

32、 the range from 35 to45F (2 to 7C) at 90 % relative humidity and located innorthern latitudes will experience an outward vapor flow inwinter and an inward flow in summer. This reversing vaporflow requires special design consideration.5.3 Properties of Insulating Materials with Respect toMoistureInsu

33、lating materials permeable to water vapor willallow moisture to diffuse through at a rate defined by itspermeance and exposure. The rate of movement is inverselyproportional to the vapor flow resistance in the vapor path.Insulation having low permeance and vapor-tight joints mayact as a vapor retard

34、er.5.3.1 If condensation of water occurs within the insulationits thermal properties can be significantly affected wherewetted. Liquid water resulting from condensation has a thermalconductivity some fifteen times greater than that of a typicallow-temperature insulation. Ice conductivity is nearly f

35、ourtimes that of water. Condensation reduces the thermal effec-tiveness of the insulation in the zone where it occurs, but if thezone is thin and perpendicular to the heat flow path, theFIG. 2 Magnitude of Water Vapor Pressure Difference for Selected Conditions (Derived from Fig. 1)TABLE 1 Cold Stor

36、age ExampleLocationSeasonBiloxi, MSSummerInternationalFalls, MNWinterOutside Design ConditionsTemperature , F (C) 93 (34) -35 (-37)Relative Humidity, % 63 67Dew Point Temperature, F (C) 78.4 (26) -42 (-41)Water Vapor Pressurein. Hg (kPa).9795 (3.32) .003 (0.01)Inside Design ConditionsTemperature, F

37、(C) -10 -10Relative Humidity, % 90 90Water Vapor Pressure in.Hg (kPa).02 .02System Design ConditionsWater Vapor PressureDifference in. Hg (kPa)0.9795 0.001 (0.067)Direction of Diffusion From outside From insideC755 1013reduction is not extreme. Water or ice in insulation joints thatare parallel to t

38、he heat flow path provide higher conductancepaths with consequent increased heat flow. Generally, hygro-scopic moisture in insulation can be disregarded.5.3.2 Thermal insulation materials range in permeabilityfrom essentially 0 perm-in. (0 g/Pa-s-m) to greater than 100perm-in. (1.45 10-7g/Pa-s-m) Be

39、cause insulation is suppliedin pieces of various size and thickness, vapor diffusion throughjoints must be considered in the permeance of the materials asapplied. The effect of temperature changes on dimensions andother physical characteristics of all materials of the assemblymust be considered as i

40、t relates to vapor flow into the joints andinto the insulation.5.4 Properties of Boundary or Finish Materials at the ColdSide of InsulationWhen a vapor pressure gradient exists thelower vapor pressure value usually will be on the lowertemperature side of the system, but not always. (There are fewexc

41、eptions, but these must be considered as special cases.) Thefinish on the cold side of the insulation-enclosing refrigeratedspaces should have high permeance relative to that of the warmside construction, so that water vapor penetrating the systemcan flow through the insulation system without conden

42、sing.This moisture should be free to move to the refrigeratingsurfaces where it is removed as condensate. When the cold sidepermeance is zero, as with insulated cold piping, water vaporthat enters the insulation system usually will condense withinthe assembly and remain as an accumulation of water,

43、frost, orice.5.5 Effect of Air LeakageWater vapor can be transportedreadily as a component of air movement into and out of anair-permeable insulation system. This fact must be taken intoaccount in the design and construction of any system in whichmoisture control is a requirement. The quantity of wa

44、ter vaporthat can be transported by air leakage through cracks orair-permeable construction can easily be several times greaterthan that which occurs by vapor diffusion alone.5.5.1 Air movement occurs as a result of air pressuredifferences. In insulated structures these may be due to windaction, buo

45、yancy forces due to temperature difference betweeninterconnected spaces, volume changes due to fluctuations intemperature and barometric pressure, and the operation ofmechanical air supply or exhaust systems. Air leakage occursthrough openings or through air-permeable construction acrosswhich the ai

46、r pressure differences occur. Water vapor in airflowing from a warm humidified region to a colder zone in aninsulation system will condense in the same way as watervapor moving only by diffusion.5.5.2 If there is no opportunity for dilution with air at lowervapor pressure along the flow path, there

47、will be no vaporpressure gradient. Condensation may occur when the air streampasses through a region in the insulation system where thetemperature is equal to or lower than the dew point of the warmregion of origin. The airflow may be from a warm region onone side of the system through to a cold reg

48、ion on the otherside, or it may consist of recirculation between interconnectedair spaces at different temperatures forming only a part of thesystem. Sufficient airflow rate could virtually eliminate thetemperature gradient through the insulation.5.5.3 When air flows from a cold region of low vaporp

49、ressure through the system to the warm side there will be adrying effect along the flow path; the accompanying loweringof temperatures along the flow path, if significant, may beundesirable.5.5.4 In any insulation system where there is a possibility ofcondensation due to air leakage, the designer should attempt toensure that there is a continuous unbroken air barrier on thewarm side of the insulation. Often this can be provided by thevapor retarder system, but sometimes it can best be providedby a separate element. Particular attention should be give

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1