ImageVerifierCode 换一换
格式:PDF , 页数:10 ,大小:169.06KB ,
资源ID:509938      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-509938.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D1510-2013 Standard Test Method for Carbon BlackIodine Adsorption Number《炭黑碘吸收值的标准试验方法》.pdf)为本站会员(explodesoak291)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D1510-2013 Standard Test Method for Carbon BlackIodine Adsorption Number《炭黑碘吸收值的标准试验方法》.pdf

1、Designation: D1510 13Standard Test Method forCarbon BlackIodine Adsorption Number1This standard is issued under the fixed designation D1510; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in par

2、entheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope1.1 This test method covers the determination of the iodineadsorption n

3、umber of carbon black.1.1.1 Method A is the original test method for this determi-nation and Method B is an alternate test method usingautomated sample processing and analysis.1.2 The iodine adsorption number of carbon black has beenshown to decrease with sample aging. New SRB HT IodineStandards hav

4、e been produced that exhibit stable iodinenumber upon aging. One or more of these SRB HT IodineStandards are recommended for daily monitoring (x-charts) toensure that the results are within the control limits of theindividual standard. Use all SRB HT Iodine Standards forstandardization of iodine tes

5、ting (see Section 8) when targetvalues cannot be obtained.1.3 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theres

6、ponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D1799 Practice for Carbon BlackSampling PackagedShipmentsD1900 Practice for Carbon BlackSa

7、mpling Bulk Ship-mentsD4483 Practice for Evaluating Precision for Test MethodStandards in the Rubber and Carbon Black ManufacturingIndustriesD4821 Guide for Carbon BlackValidation of Test MethodPrecision and BiasE969 Specification for Glass Volumetric (Transfer) Pipets2.2 European Standards:3ISO/EN/

8、DIN 8655-3 Piston-operated volumetric apparatus -Part 3: Piston burettes3. Summary of Test Methods3.1 In Test Method A, a weighed sample of carbon black istreated with a portion of standard iodine solution and themixture shaken and centrifuged. The excess iodine is thentitrated with standard sodium

9、thiosulfate solution, and theadsorbed iodine is expressed as a fraction of the total mass ofblack.3.2 In Test Method B, a weighed sample of carbon black istreated with a portion of standard iodine solution using anautomated sample processor where the mixture is stirred,settled and aliquoted for auto

10、matic titration. The excess iodineis titrated with standard sodium thiosulfate solution, and theadsorbed iodine is expressed as a fraction of the total mass ofblack.4. Significance and Use4.1 The iodine adsorption number is useful in characterizingcarbon blacks. It is related to the surface area of

11、carbon blacksand is generally in agreement with nitrogen surface area. Thepresence of volatiles, surface porosity, or extractables willinfluence the iodine adsorption number. Aging of carbon blackcan also influence the iodine number.5. Apparatus5.1 Vials, glass, optically clear type, with polyethyle

12、nestoppers, 45 cm3.5.2 Gravity Convection Drying Oven, capable of maintain-ing 125 6 5C.5.3 Buret, either of the following may be used:1This test method is under the jurisdiction of ASTM Committee D24 on CarbonBlack and is the direct responsibility of Subcommittee D24.21 on Carbon BlackSurface Area

13、and Related Properties.Current edition approved July 1, 2013. Published August 2013. Originallyapproved in 1957. Last previous edition approved in 2012 as D1510 12. DOI:10.1520/D1510-13.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceas

14、tm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from International Organization for Standardization (ISO), 1, ch. dela Voie-Creuse, CP 56, CH-1211 Geneva 20, Switzerland, http:/www.iso.org.Copyright ASTM Internat

15、ional, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States15.3.1 Digital Buret, 25-cm3capacity, with 0.01-cm3incre-ment counter and zero reset control, or5.3.2 Buret, glass 25-cm3, Class A, side-arm filling, gradu-ated in 0.05 cm3and with automatic zero.5.4 Repetitive

16、 Dispenser, 25-cm3capacity, 60.1% repro-ducibility and calibrated to within 60.03-cm3accuracy.5.5 Balance, analytical, with 0.1-mg sensitivity.5.6 Centrifuge, with minimum speed of 105 rad/s (1000 r/min).5.7 Volumetric Flask, 2000-cm3with standard taper stopper.5.8 Funnel, large diameter, with stand

17、ard taper joint to fitthe 2000-cm3flask.5.9 Glass Bottle, amber, 2000-cm3, with standard taperstopper.5.10 Glass Jug, approximate capacity 20-dm3.5.11 Stirrer, approximately 300 by 300 mm for mixing.5.12 Stirrer, approximately 100 by 100 mm for titrating.5.13 Desiccator.5.14 Miscellaneous Class A Gl

18、assware, and equipmentnecessary to carry out the test as written.5.15 Mechanical Shaker, with at least 1 in. stroke length anda minimum of 240 strokes/min.5.16 Automatic Titrator.5.17 Redox Electrode, combined platinum ring electrodewith an Ag/AgCl/KCl reference electrode and a ceramic frit.5.18 Vol

19、umetric Flask, 500 cm3with standard taper stopper.5.19 Flask, 250 cm3with ground glass stopper.5.20 Automatic Sample Processor and Titration Apparatus,equipped with disposable filter.46. Reagents and Solutions6.1 Purity of ReagentsUnless otherwise stated, all chemi-cals shall be of reagent grade.6.2

20、 The preparation of the solutions listed below is de-scribed in AnnexA1. Pre-mixed 0.04728 N iodine solution and0.0394 N sodium thiosulfate may be purchased from commer-cial sources. It is recommended that the normality of pre-mixedsolutions be verified before use.6.3 Iodine Solution, c(I2) = 0.0236

21、4 mol/dm3(0.04728 N),containing 57.0 g potassium iodide Kl per dm3.6.4 Potassium Iodate Solution, c(KIO3) = 0.00657 mol/dm3(0.0394 N ) containing 45.0 g potassium iodide per dm3.6.5 Potassium Dichromate Solution, c(K2Cr2O7)=0.006567 (0.0394 N), containing 1.932 g potassium dichromate(certified/trace

22、able primary standard) per dm3.(WarningPotassium dichromate is carcinogenic.)6.6 Sodium Thiosulfate Solution, c(Na2S2O3) = 0.0394 mol/dm3(0.0394 N), containing 5 cm3n-amyl alcohol per dm3.6.7 Sulfuric Acid, 10 %.6.8 Soluble Starch Solution, 1 %, containing 0.02 g salicylicacid per dm3.6.9 Deionized

23、Water.7. Standardization of Solutions7.1 Sodium Thiosulfate, 0.0394 N (60.00008):7.1.1 Use potassium dichromate solution as follows:7.1.1.1 Measure approximately 20 cm3of 10 % potassiumiodide (see A1.4) solution into a small graduated cylinder andtransfer to a 250 cm3iodine flask with a ground glass

24、 stopper.7.1.1.2 Measure approximately 20 cm3of 10 % sulfuric acidsolution (see A1.5) into a small graduated cylinder and add tothe KI solution in the iodine flask. The mixture should remaincolorless.NOTE 1If a yellow color should develop, discard this KI solution.7.1.1.3 Using a 20 cm3pipet, transf

25、er 20 cm3of standard0.0394 N potassium dichromate solution (see A1.8) into the250 cm3iodine flask, replace stopper, swirl, and place in thedark for 15 min.7.1.1.4 Titrate the contents of the iodine flask against thenew sodium thiosulfate solution following 7.1.3 or 7.1.4.7.1.2 Use potassium iodate/i

26、odide solution as follows:7.1.2.1 Pipet exactly 20 cm3of 0.0394 N potassium iodate/iodide solution into a 250-cm3iodine flask.7.1.2.2 Measure approximately 5 cm3of 10 % sulfuric acidinto a small graduated cylinder and add to the iodate/iodidesolution.7.1.2.3 Cap immediately and mix thoroughly.7.1.2.

27、4 Titrate the contents of the iodine flask against thenew sodium thiosulfate solution following 7.1.3 or 7.1.4.7.1.3 Digital Buret:7.1.3.1 Switch the digital buret to fill mode, fill the reservoirwith unstandardized sodium thiosulfate solution, and flush theinlet and delivery tubes.7.1.3.2 Change to

28、 the titrate mode and zero the counter.7.1.3.3 Add sodium thiosulfate until the contents of theiodine flask are a pale yellowish (potassium iodate) or paleyellowish-green (potassium dichromate). Wash the buret tipand the walls of the flask with water.7.1.3.4 Add 5 drops of starch solution to the fla

29、sk.7.1.3.5 Continue adding sodium thiosulfate dropwise untilthe blue or blue-violet color almost disappears.7.1.3.6 Wash the tip and walls of the flask with water, thenadvance the counter in 0.01-cm3increments. Continue thissequence until the endpoint is reached, indicated by a colorless(potassium i

30、odate) or sea-green (potassium dichromate) solu-tion.7.1.3.7 Record the titration value and repeat from 7.1.1 or7.1.2 for a duplicate determination.7.1.3.8 Calculate the normality of the sodium thiosulfatesolution as in 7.1.5 and proceed as in 7.1.6. If the titration is4The sole source of supply of

31、the apparatus known to the committee at this timeis Brinkmann Instruments, Inc., One Cantiague Rd., PO Box 1019, Westbury, NY11590-0207. The sole source of supply of the filter (disposable filter part #17594 K5 m Minisart with luer lock outlet) known to the committee at this time is SartoriusStedim

32、North America Inc., 131 Heartland Blvd., Edgewood, NY 11717. If you areaware of alternative suppliers, please provide this information to ASTM Interna-tional Headquarters. Your comments will receive careful consideration at a meetingof the responsible technical committee,1which you may attend.D1510

33、132made to standardize the iodine solution as described in 7.2calculate the normality of the iodine solution as in 7.2.1.2 andproceed as in 7.2.1.3.7.1.4 Glass Buret:7.1.4.1 Using a conventional glass buret, fill the buret withunstandardized sodium-thiosulfate solution and flush 2 to3cm3through the

34、tip.7.1.4.2 Adjust to the mark and titrate to a pale yellowish(potassium iodate) or pale yellowish-green (potassium dichro-mate).7.1.4.3 Wash the buret tip and the walls of the flask withwater.7.1.4.4 Add 5 drops of starch solution to the iodine flask.7.1.4.5 Continue adding sodium thiosulfate dropw

35、ise untilthe endpoint is reached, indicated by a colorless (potassiumiodate) or sea-green (potassium dichromate) solution.7.1.4.6 Record the titration value to the nearest 0.025 cm3and repeat from 7.1.1 or 7.1.2 for a duplicate determination.NOTE 2To achieve maximum performance from a glass buret, i

36、t isnecessary to use a small magnifier and to read to the nearest 0.025 cm3.7.1.4.7 Calculate the normality of the sodium thiosulfatesolution as in 7.1.5 and proceed as in 7.1.6. If the titration ismade to standardize the iodine solution as described in 7.2calculate the normality of the iodine solut

37、ion as in 7.2.1.2 andproceed as in 7.2.1.3.7.1.5 Calculate the normality of the sodium thiosulfatesolutions as follows:N 5 20 0.0394!/T (1)where:N = normality, andT = titration volume, cm3.7.1.6 If N is not equal to 0.0394, adjust the solution in thefollowing manner: if the solution is too strong, a

38、dd water (2.5cm3/dm3solution for each 0.0001 N over 0.0394); if thesolution is too weak, add solid sodium thiosulfate (0.025 g/dm3for each 0.0001 N under 0.0394).7.2 Iodine Solution 0.04728 N (60.00003)This solutionmay be standardized against the secondary standard sodium-thiosulfate solution (see A

39、1.3) standardized as in 7.1.7.2.1 Use sodium thiosulfate solution as follows:7.2.1.1 Pipet exactly 20 cm3of iodine solution into a250-cm3iodine flask and cap. Continue as in 7.1.3 or 7.1.4.7.2.1.2 Calculate the normality of the iodine solution asfollows:N 5 0.0394! T/20 (2)where:N = normality, andT

40、=cm3of 0.0394 N sodium thiosulfate solution.7.2.1.3 If N is not equal to 0.04728 N, adjust solution in thefollowing manner: if the solution is too concentrated, add water(2.1 cm3/dm3for each 0.0001 N over 0.04728); if the solutionis too diluted, add iodine (12.7 mg/dm3for each 0.0001 Nunder 0.04728)

41、. (This iodine may be more convenientlydispensed from a concentrated solution.)8. Normalization Using SRB HT Iodine Standards8.1 When a laboratory cannot obtain target values for allthree SRB HT Iodine Standards within established x-charttolerances, the user should review recommendations found inGui

42、de D4821. If any one of the three SRB HT Iodine Standardsis still outside acceptable tolerances, the method described in8.2-8.5 should be used to normalize all test results.8.2 Test the three SRB HT Iodine Standards four times each.8.3 Perform a regression analysis using the target value ofthe SRB H

43、T Iodine Standards (y value) and the individualmeasured value (x value).8.4 Normalize the values of all subsequent test results usingthis regression equation:Normalized value 5 measured value 3slope!1y 2 intercept (3)8.5 Alternatively, a table of numbers may be generatedbased on the regression equat

44、ion to find the correspondencebetween a measured value and a normalized value.8.6 Reevaluate the need for normalization whenever re-placement apparatus or new lots of iodine or sodium thiosulfatesolutions, or both, are put into use.9. Sampling9.1 Samples shall be taken in accordance with PracticesD1

45、799 and D1900.10. Blank Iodine Determination10.1 Method ABlank Iodine Determination:10.1.1 Make a blank iodine determination by pipeting 20cm3or dispensing 25 cm3of 0.04728 N iodine solution into a125-cm3Erlenmeyer flask and titrating with 0.0394 N sodiumthiosulfate as in 11.10.1, 11.10.2,or11.10.3.

46、10.1.2 A 25-cm3blank must be multiplied by 0.8 for use inthe formula of 13.1.10.1.3 Make a duplicate blank determination and use theaverage of the two in the calculations.NOTE 3A duplicate blank determination need be run only once eachday, unless new solutions are introduced during the day.10.1.4 If

47、 both solutions are within acceptable limits, theblank will measure 24.00 6 0.09 cm3. If not, the normalities ofone or both solutions should be rechecked. If, after the recheckof solutions, normalities are still outside the acceptable limitsrefer to 7.2.1.3 to adjust iodine solution. See Table 1 for

48、 blanktolerance components.10.1.5 The blank tolerance for a 20 cm3volume of iodinesolution is defined as the sum of (1) titration volume deviationfor acceptable variation in both iodine and sodium thiosulfatesolution concentrations, and (2) dispenser tolerance for ClassA20 mL pipet.TABLE 1 Blank Tol

49、erance ComponentsBlankVolume cm3A. SolutionDeviations cm3B. DispenserTolerance cm3BlankTolerance cm320.00 0.06 0.03 0.09D1510 13310.1.6 The solution deviation is based on the maximumvariation in solution concentrations defined in 7.1 and 7.2.Tolerances for ClassAvolumetric pipets are from SpecificationE969.10.2 Method BBlank Iodine Determination:10.2.1 Make a blank iodine determination by placing amagnetic stir bar into an empty beaker and place the beakerinto the automated sample processor.10.2.2 Initiate the automatic sample processor and titrationapparatus.

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1