ImageVerifierCode 换一换
格式:PDF , 页数:20 ,大小:341.85KB ,
资源ID:511485      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-511485.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D256-2010 Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics《测定塑料的耐悬臂梁摆锤撞击性能的标准试验方法》.pdf)为本站会员(testyield361)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D256-2010 Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics《测定塑料的耐悬臂梁摆锤撞击性能的标准试验方法》.pdf

1、Designation: D256 10Standard Test Methods forDetermining the Izod Pendulum Impact Resistance ofPlastics1This standard is issued under the fixed designation D256; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revi

2、sion. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope*1.1 These test methods cover the determination of

3、 theresistance of plastics to “standardized” (see Note 1) pendulum-type hammers, mounted in “standardized” machines, in break-ing standard specimens with one pendulum swing (see Note 2).The standard tests for these test methods require specimensmade with a milled notch (see Note 3). In Test Methods

4、A, C,and D, the notch produces a stress concentration that increasesthe probability of a brittle, rather than a ductile, fracture. InTest Method E, the impact resistance is obtained by reversingthe notched specimen 180 in the clamping vise. The results ofall test methods are reported in terms of ene

5、rgy absorbed perunit of specimen width or per unit of cross-sectional area underthe notch. (See Note 4.)NOTE 1The machines with their pendulum-type hammers have been“standardized” in that they must comply with certain requirements,including a fixed height of hammer fall that results in a substantial

6、ly fixedvelocity of the hammer at the moment of impact. However, hammers ofdifferent initial energies (produced by varying their effective weights) arerecommended for use with specimens of different impact resistance.Moreover, manufacturers of the equipment are permitted to use differentlengths and

7、constructions of pendulums with possible differences inpendulum rigidities resulting. (See Section 5.) Be aware that otherdifferences in machine design may exist. The specimens are “standard-ized” in that they are required to have one fixed length, one fixed depth,and one particular design of milled

8、 notch. The width of the specimens ispermitted to vary between limits.NOTE 2Results generated using pendulums that utilize a load cell torecord the impact force and thus impact energy, may not be equivalent toresults that are generated using manually or digitally encoded testers thatmeasure the ener

9、gy remaining in the pendulum after impact.NOTE 3The notch in the Izod specimen serves to concentrate thestress, minimize plastic deformation, and direct the fracture to the part ofthe specimen behind the notch. Scatter in energy-to-break is thus reduced.However, because of differences in the elastic

10、 and viscoelastic propertiesof plastics, response to a given notch varies among materials. A measureof a plastics “notch sensitivity” may be obtained with Test Method D bycomparing the energies to break specimens having different radii at thebase of the notch.NOTE 4Caution must be exercised in inter

11、preting the results of thesestandard test methods. The following testing parameters may affect testresults significantly:Method of fabrication, including but not limited to processingtechnology, molding conditions, mold design, and thermaltreatments;Method of notching;Speed of notching tool;Design o

12、f notching apparatus;Quality of the notch;Time between notching and test;Test specimen thickness,Test specimen width under notch, andEnvironmental conditioning.1.2 The values stated in SI units are to be regarded asstandard. The values given in parentheses are for informationonly.1.3 This standard d

13、oes not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.NOTE 5These test methods resemble

14、ISO 180:1993 in regard to titleonly. The contents are significantly different.2. Referenced Documents2.1 ASTM Standards:2D618 Practice for Conditioning Plastics for TestingD883 Terminology Relating to PlasticsD3641 Practice for Injection Molding Test Specimens ofThermoplastic Molding and Extrusion M

15、aterialsD4066 Classification System for Nylon Injection and Ex-trusion Materials (PA)D5947 Test Methods for Physical Dimensions of SolidPlastics Specimens1These test methods are under the jurisdiction of ASTM Committee D20 onPlastics and are the direct responsibility of Subcommittee D20.10 on Mechan

16、icalProperties.Current edition approved May 1, 2010. Published June 2010. Originallyapproved in 1926. Last previous edition approved in 2006 as D256 - 06a1. DOI:10.1520/D0256-10.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org.

17、For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.D6

18、110 Test Method for Determining the Charpy ImpactResistance of Notched Specimens of PlasticsE691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test Method2.2 ISO Standard:ISO 180:1993 PlasticsDetermination of Izod ImpactStrength of Rigid Materials33. Terminology3.1

19、Definitions For definitions related to plastics seeTerminology D883.3.2 Definitions of Terms Specific to This Standard:3.2.1 cantilevera projecting beam clamped at only oneend.3.2.2 notch sensitivitya measure of the variation of impactenergy as a function of notch radius.4. Types of Tests4.1 Four si

20、milar methods are presented in these test meth-ods. (See Note 6.) All test methods use the same testingmachine and specimen dimensions. There is no known meansfor correlating the results from the different test methods.NOTE 6Previous versions of this test method contained Test MethodB for Charpy. It

21、 has been removed from this test method and has beenpublished as D6110.4.1.1 In Test Method A, the specimen is held as a verticalcantilever beam and is broken by a single swing of thependulum. The line of initial contact is at a fixed distance fromthe specimen clamp and from the centerline of the no

22、tch and onthe same face as the notch.4.1.2 Test Method C is similar to Test Method A, except forthe addition of a procedure for determining the energy ex-pended in tossing a portion of the specimen.The value reportedis called the “estimated net Izod impact resistance.” TestMethod C is preferred over

23、 Test Method A for materials thathave an Izod impact resistance of less than 27 J/m (0.5ftlbf/in.) under notch. (See Appendix X4 for optional units.)The differences between Test Methods A and C becomeunimportant for materials that have an Izod impact resistancehigher than this value.4.1.3 Test Metho

24、d D provides a measure of the notchsensitivity of a material. The stress-concentration at the notchincreases with decreasing notch radius.4.1.3.1 For a given system, greater stress concentrationresults in higher localized rates-of-strain. Since the effect ofstrain-rate on energy-to-break varies amon

25、g materials, a mea-sure of this effect may be obtained by testing specimens withdifferent notch radii. In the Izod-type test it has been demon-strated that the function, energy-to-break versus notch radius,is reasonably linear from a radius of 0.03 to 2.5 mm (0.001 to0.100 in.), provided that all sp

26、ecimens have the same type ofbreak. (See 5.8 and 22.1.)4.1.3.2 For the purpose of this test, the slope, b (see 22.1),of the line between radii of 0.25 and 1.0 mm (0.010 and 0.040in.) is used, unless tests with the 1.0-mm radius give “non-break” results. In that case, 0.25 and 0.50-mm (0.010 and0.020

27、-in.) radii may be used. The effect of notch radius on theimpact energy to break a specimen under the conditions of thistest is measured by the value b. Materials with low values of b,whether high or low energy-to-break with the standard notch,are relatively insensitive to differences in notch radiu

28、s; whilethe energy-to-break materials with high values of b is highlydependent on notch radius. The parameter b cannot be used indesign calculations but may serve as a guide to the designerand in selection of materials.4.2 Test Method E is similar to Test Method A, except thatthe specimen is reverse

29、d in the vise of the machine 180 to theusual striking position, such that the striker of the apparatusimpacts the specimen on the face opposite the notch. (See Fig.1, Fig. 2.) Test Method E is used to give an indication of theunnotched impact resistance of plastics; however, results ob-tained by the

30、 reversed notch method may not always agree withthose obtained on a completely unnotched specimen. (See28.1.)4,55. Significance and Use5.1 Before proceeding with these test methods, referenceshould be made to the specification of the material being tested.Any test specimen preparation, conditioning,

31、 dimensions, andtesting parameters covered in the materials specification shalltake precedence over those mentioned in these test methods. Ifthere is no material specification, then the default conditionsapply.5.2 The pendulum impact test indicates the energy to breakstandard test specimens of speci

32、fied size under stipulatedparameters of specimen mounting, notching, and pendulumvelocity-at-impact.3Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor, New York, NY 10036, http:/www.ansi.org.4Supporting data giving results of the interlaboratory tests are availabl

33、e fromASTM Headquarters. Request RR:D20-1021.5Supporting data giving results of the interlaboratory tests are available fromASTM Headquarters. Request RR:D20-1026.FIG. 1 Relationship of Vise, Specimen, and Striking Edge to EachOther for Izod Test Methods A and CD256 1025.3 The energy lost by the pen

34、dulum during the breakage ofthe specimen is the sum of the following:5.3.1 Energy to initiate fracture of the specimen;5.3.2 Energy to propagate the fracture across the specimen;5.3.3 Energy to throw the free end (or ends) of the brokenspecimen (“toss correction”);5.3.4 Energy to bend the specimen;5

35、.3.5 Energy to produce vibration in the pendulum arm;5.3.6 Energy to produce vibration or horizontal movementof the machine frame or base;5.3.7 Energy to overcome friction in the pendulum bearingand in the indicating mechanism, and to overcome windage(pendulum air drag);5.3.8 Energy to indent or def

36、orm plastically the specimen atthe line of impact; and5.3.9 Energy to overcome the friction caused by the rubbingof the striker (or other part of the pendulum) over the face ofthe bent specimen.5.4 For relatively brittle materials, for which fracture propa-gation energy is small in comparison with t

37、he fracture initiationenergy, the indicated impact energy absorbed is, for allpractical purposes, the sum of factors 5.3.1 and 5.3.3. The tosscorrection (see 5.3.3) may represent a very large fraction of thetotal energy absorbed when testing relatively dense and brittlematerials. Test Method C shall

38、 be used for materials that havean Izod impact resistance of less than 27 J/m (0.5 ftlbf/in.).(See Appendix X4 for optional units.) The toss correctionobtained in Test Method C is only an approximation of the tosserror, since the rotational and rectilinear velocities may not bethe same during the re

39、-toss of the specimen as for the originaltoss, and because stored stresses in the specimen may havebeen released as kinetic energy during the specimen fracture.5.5 For tough, ductile, fiber filled, or cloth-laminated mate-rials, the fracture propagation energy (see 5.3.2) may be largecompared to the

40、 fracture initiation energy (see 5.3.1). Whentesting these materials, factors (see 5.3.2, 5.3.5, and 5.3.9) canbecome quite significant, even when the specimen is accuratelymachined and positioned and the machine is in good conditionwith adequate capacity. (See Note 7.) Bending (see 5.3.4) andindent

41、ation losses (see 5.3.8) may be appreciable when testingsoft materials.NOTE 7Although the frame and base of the machine should besufficiently rigid and massive to handle the energies of tough specimenswithout motion or excessive vibration, the design must ensure that thecenter of percussion be at th

42、e center of strike. Locating the strikerprecisely at the center of percussion reduces vibration of the pendulumarm when used with brittle specimens. However, some losses due topendulum arm vibration, the amount varying with the design of thependulum, will occur with tough specimens, even when the st

43、riker isproperly positioned.5.6 In a well-designed machine of sufficient rigidity andmass, the losses due to factors 5.3.6 and 5.3.7 should be verysmall. Vibrational losses (see 5.3.6) can be quite large whenwide specimens of tough materials are tested in machines ofinsufficient mass, not securely f

44、astened to a heavy base.5.7 With some materials, a critical width of specimen maybe found below which specimens will appear ductile, asevidenced by considerable drawing or necking down in theregion behind the notch and by a relatively high-energyabsorption, and above which they will appear brittle a

45、sevidenced by little or no drawing down or necking and by arelatively low-energy absorption. Since these methods permit avariation in the width of the specimens, and since the widthdictates, for many materials, whether a brittle, low-energybreak or a ductile, high energy break will occur, it is nece

46、ssarythat the width be stated in the specification covering thatmaterial and that the width be reported along with the impactresistance. In view of the preceding, one should not makecomparisons between data from specimens having widths thatdiffer by more than a few mils.5.8 The type of failure for e

47、ach specimen shall be recordedas one of the four categories listed as follows:C= Complete BreakA break where the specimenseparates into two or more pieces.H= Hinge BreakAn incomplete break, such that onepart of the specimen cannot support itself abovethe horizontal when the other part is held vertic

48、ally(less than 90 included angle).P= Partial BreakAn incomplete break that does notmeet the definition for a hinge break but has frac-tured at least 90 % of the distance between thevertex of the notch and the opposite side.NB = Non-BreakAn incomplete break where the frac-ture extends less than 90 %

49、of the distance be-tween the vertex of the notch and the oppositeside.For tough materials, the pendulum may not have the energynecessary to complete the breaking of the extreme fibers andtoss the broken piece or pieces. Results obtained from “non-break” specimens shall be considered a departure from stan-dard and shall not be reported as a standard result. Impactresistance cannot be directly compared for any two materialsthat experience different types of failure as defined in the testmethod by this code. Averages reported must likewise bederived from specimens

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1