ImageVerifierCode 换一换
格式:PDF , 页数:11 ,大小:167.88KB ,
资源ID:511544      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-511544.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D323-2008(2014) Standard Test Method for Vapor Pressure of Petroleum Products &40 Reid Method&41 《石油制品蒸气压力的标准试验方法(雷德法)》.pdf)为本站会员(orderah291)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D323-2008(2014) Standard Test Method for Vapor Pressure of Petroleum Products &40 Reid Method&41 《石油制品蒸气压力的标准试验方法(雷德法)》.pdf

1、Designation: D323 08 (Reapproved 2014)Standard Test Method forVapor Pressure of Petroleum Products (Reid Method)1This standard is issued under the fixed designation D323; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of

2、last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S. Department of Defense.1. Scope1.1 This test method covers procedur

3、es for the determina-tion of vapor pressure (see Note 1) of gasoline, volatile crudeoil, and other volatile petroleum products.1.2 Procedure A is applicable to gasoline and other petro-leum products with a vapor pressure of less than 180 kPa(26 psi).1.3 Procedure B may also be applicable to these ot

4、hermaterials, but only gasoline was included in the interlaboratorytest program to determine the precision of this test method.1.4 Procedure C is for materials with a vapor pressure ofgreater than 180 kPa (26 psi).1.5 Procedure D for aviation gasoline with a vapor pressureof approximately 50 kPa (7

5、psi).NOTE 1Because the external atmospheric pressure is counteracted bythe atmospheric pressure initially present in the vapor chamber, the Reidvapor pressure is an absolute pressure at 37.8C (100F) in kilopascals(pounds-force per square inch). The Reid vapor pressure differs from thetrue vapor pres

6、sure of the sample due to some small sample vaporizationand the presence of water vapor and air in the confined space.1.6 This test method is not applicable to liquefied petroleumgases or fuels containing oxygenated compounds other thanmethyl t-butyl ether (MTBE). For determination of the vaporpress

7、ure of liquefied petroleum gases, refer to Test MethodD1267 or Test Method D6897. For determination of the vaporpressure of gasoline-oxygenate blends, refer to Test MethodD4953. The precision for crude oil has not been determinedsince the early 1950s (see Note 3). Test Method D6377 hasbeen approved

8、as a method for determination of vapor pressureof crude oil. IP 481 is a test method for determination of theair-saturated vapor pressure of crude oil.1.7 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are for informationonly.1.8 This standard does n

9、ot purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. Specific warningstatements are given i

10、n Sections 7 and 18, and 12.5.3, 15.5,21.2, A1.1.2, A1.1.6, and A2.3.2. Referenced Documents2.1 ASTM Standards:2D1267 Test Method for Gage Vapor Pressure of LiquefiedPetroleum (LP) Gases (LP-Gas Method)D4057 Practice for Manual Sampling of Petroleum andPetroleum ProductsD4175 Terminology Relating to

11、 Petroleum, PetroleumProducts, and LubricantsD4953 Test Method for Vapor Pressure of Gasoline andGasoline-Oxygenate Blends (Dry Method)D6377 Test Method for Determination of Vapor Pressure ofCrude Oil: VPCRx(Expansion Method)D6897 Test Method for Vapor Pressure of Liquefied Petro-leum Gases (LPG) (E

12、xpansion Method)E1 Specification for ASTM Liquid-in-Glass Thermometers2.2 Energy Institute Standards:IP 481 Test Method for Determination of the Air SaturatedVapour Pressure (ASVP) of Crude Oil33. Terminology3.1 Definitions:3.1.1 Bourdon spring gauge, npressure measuring devicethat employs a Bourdon

13、 tube connected to an indicator.3.1.2 Bourdon tube, nflattened metal tube bent to a curvethat straightens under internal pressure.3.1.3 gasoline-oxygenate blend, nspark-ignition enginefuel consisting primarily of gasoline with one or more oxygen-ates.1This test method is under the jurisdiction of AS

14、TM Committee D02 onPetroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility ofSubcommittee D02.08 on Volatility.Current edition approved June 1, 2014. Published July 2014. Originally approvedin 1930. Last previous edition approved in 2008 as D32308. DOI: 10.1520/D0323-08R14.

15、2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from Energy Institute, 61 New Cavendish St., Londo

16、n, WIG 7AR,U.K., http:/www.energyinst.org.uk.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13.1.4 oxygenate, noxygen-containing ashless organiccompound, such as an alcohol or ether, which may be used asa fuel or fuel supplement. D417

17、53.1.5 Reid vapor pressure (RVP), nresultant total pressurereading, corrected for measuring error, of a specific empiricaltest method (Test Method D323) for measuring the vaporpressure of gasoline and other volatile products.3.1.6 vapor pressure, npressure exerted by the vapor of aliquid when in equ

18、ilibrium with the liquid. D41753.2 Abbreviations:3.2.1 ASVP, nair saturated vapor pressure.3.2.2 LPG, nliquefied petroleum gases.3.2.3 MTBE, nmethyl t-butyl ether.3.2.4 RVP, nReid Vapor Pressure.4. Summary of Test Method4.1 The liquid chamber of the vapor pressure apparatus isfilled with the chilled

19、 sample and connected to the vaporchamber that has been heated to 37.8C (100F) in a bath. Theassembled apparatus is immersed in a bath at 37.8C (100F)until a constant pressure is observed. The reading, suitablycorrected, is reported as the Reid vapor pressure.4.2 All four procedures utilize liquid a

20、nd vapor chambers ofthe same internal volume. Procedure B utilizes a semiauto-matic apparatus immersed in a horizontal bath and rotatedwhile attaining equilibrium. Either a Bourdon gauge or pres-sure transducer may be used with this procedure. Procedure Cutilizes a liquid chamber with two valved ope

21、nings. ProcedureD requires more stringent limits on the ratio of the liquid andvapor chambers.5. Significance and Use5.1 Vapor pressure is an important physical property ofvolatile liquids. This test method is used to determine the vaporpressure at 37.8C (100F) of petroleum products and crudeoils wi

22、th initial boiling point above 0C (32F).5.2 Vapor pressure is critically important for both automo-tive and aviation gasolines, affecting starting, warm-up, andtendency to vapor lock with high operating temperatures orhigh altitudes. Maximum vapor pressure limits for gasoline arelegally mandated in

23、some areas as a measure of air pollutioncontrol.5.3 Vapor pressure of crude oils is of importance to thecrude producer and the refiner for general handling and initialrefinery treatment.5.4 Vapor pressure is also used as an indirect measure of theevaporation rate of volatile petroleum solvents.6. Ap

24、paratus6.1 The required apparatus for Procedures A, C, and D isdescribed in AnnexA1.Apparatus for Procedure B is describedin Annex A2.7. Hazards7.1 Gross errors can be obtained in vapor pressure measure-ments if the prescribed procedure is not followed carefully. Thefollowing list emphasizes the imp

25、ortance of strict adherence tothe precautions given in the procedure:7.1.1 Checking the Pressure GaugeCheck all gaugesagainst a pressure measuring device (see A1.6) after each testto ensure higher precision of results (see 12.4). Read the gaugewhile in a vertical position and after tapping it lightl

26、y.7.1.2 Checking for LeaksCheck all apparatus before andduring each test for both liquid and vapor leaks (see Note 5).7.1.3 SamplingBecause initial sampling and the handlingof samples will greatly affect the final results, employ theutmost precaution and the most meticulous care to avoid lossesthrou

27、gh evaporation and even slight changes in composition(see Section 8 and 12.1). In no case shall any part of the Reidapparatus itself be used as the sample container prior toactually conducting the test.7.1.4 Purging the ApparatusThoroughly purge the pres-sure gauge, the liquid chamber, and the vapor

28、 chamber to besure that they are free of residual sample. This is mostconveniently done at the end of the test in preparation for thenext test (see 12.5 and 15.5).7.1.5 Coupling the ApparatusCarefully observe the re-quirements of 12.2.7.1.6 Shaking the ApparatusShake the apparatus vigor-ously as dir

29、ected to ensure equilibrium.8. Sampling8.1 The extreme sensitivity of vapor pressure measurementsto losses through evaporation and the resulting changes incomposition is such as to require the utmost precaution and themost meticulous care in the handling of samples. The provi-sions of this section s

30、hall apply to all samples for vaporpressure determinations, except as specifically excluded forsamples having vapor pressures above 180 kPa (26 psi); seeSection 19.8.2 Sampling shall be done in accordance with PracticeD4057.8.3 Sample Container SizeThe size of the sample con-tainer from which the va

31、por pressure sample is taken shall be1 L (1 qt). It shall be 70 to 80 % filled with sample.8.3.1 The present precision statement has been derivedusing samples in 1-L (1-qt) containers. However, samplestaken in containers of other sizes as prescribed in PracticeD4057 can be used if it is recognized t

32、hat the precision couldbe affected. In the case of referee testing, the 1-L (1-qt) samplecontainer shall be mandatory.8.4 The Reid vapor pressure determination shall be per-formed on the first test specimen withdrawn from the samplecontainer. The remaining sample in the container cannot beused for a

33、 second vapor pressure determination. If necessary,obtain a new sample.8.4.1 Protect samples from excessive heat prior to testing.8.4.2 Do not test samples in leaky containers. They shouldbe discarded and new samples obtained.8.5 Sampling Handling TemperatureIn all cases, cool thesample container an

34、d contents to 0 to 1C (32 to 34F) beforethe container is opened. Sufficient time to reach this tempera-ture shall be ensured by direct measurement of the temperatureD323 08 (2014)2of a similar liquid in a like container placed in the cooling bathat the same time as the sample.9. Report9.1 Report the

35、 result observed in 12.4 or 15.4, after correct-ing for any difference between the gauge and the pressuremeasuring device (see A1.6), to the nearest 0.25 kPa (0.05 psi)as the Reid vapor pressure.10. Precison and Bias10.1 The following criteria are to be used for judging theacceptability of results (

36、95 % confidence):10.1.1 RepeatabilityThe difference between successivetest results obtained by the same operator with the sameapparatus under constant operating conditions on identical testmaterial would, in the long run, in the normal and correctoperation of the test method, exceed the following va

37、lue onlyin one case in twenty.Range RepeatabilityProcedure kPa psi kPa psiA Gasoline 35100 515 3.2 0.46 Note 2B Gasoline 35100 515 1.2 0.17 Note 2A 035 05 0.7 0.10 Note 3A 110180 1626 2.1 0.3 Note 3C 180 26 2.8 0.4 Note 3D AviationGasoline 50 7 0.7 0.1 Note 310.1.2 ReproducibilityThe difference betw

38、een two, singleand independent results, obtained by different operators work-ing in different laboratories on identical test material would, inthe long run, in the normal and correct operation of the testmethod, exceed the following value only in one case in twenty.Range ReproducibilityProcedure kPa

39、 psi kPa psiA Gasoline 35100 515 5.2 0.75 Note 2B Gasoline 35100 515 4.5 0.66 Note 2A 035 05 2.4 0.35 Note 3A 110180 1626 2.8 0.4 Note 3C 180 26 4.9 0.7 Note 3D AviationGasoline 50 7 1.0 0.15 Note 3NOTE 2These precision values are derived from a 1987 cooperativeprogram4and the current Committee D02

40、Statistical Method RR:D02-1007.NOTE 3These precision values were developed in the early 1950s,prior to the current statistical evaluation method.10.2 Bias:10.2.1 Absolute BiasSince there is no accepted referencematerial suitable for determining the bias for this test method,bias cannot be determined

41、. The amount of bias between thistest vapor pressure and true vapor pressure is unknown.10.2.2 Relative BiasThere is no statistically significantbias between Procedures A and B for gasolines as determinedin the last cooperative test program.PROCEDURE AFOR PETROLEUM PRODUCTS HAVING REIDVAPOR PRESSURE

42、S BELOW 180 kPa (26 psi)11. Preparation for Test11.1 Verification of Sample Container FillingWith thesample at a temperature of 0 to 1C, take the container from thecooling bath or refrigerator and wipe dry with absorbentmaterial. If the container is not transparent, unseal it, and usinga suitable ga

43、uge, confirm that the sample volume equals 70 to80 % of the container capacity (see Note 4). If the sample iscontained in a transparent glass container, verify that thecontainer is 70 to 80 % full by suitable means (see Note 4).NOTE 4For nontransparent containers, one way to confirm that thesample v

44、olume equals 70 to 80 % of the container capacity is to use adipstick that has been pre-marked to indicate the 70 and 80 % containercapacities. The dipstick should be of such material that it shows wettingafter being immersed and withdrawn from the sample. To confirm thesample volume, insert the dip

45、stick into the sample container so that ittouches the bottom of the container at a perpendicular angle, beforeremoving the dipstick. For transparent containers, using a marked ruler orby comparing the sample container to a like container that has the 70 and80 % levels clearly marked, has been found

46、suitable.11.1.1 Discard the sample if its volume is less than 70 % ofthe container capacity.11.1.2 If the container is more than 80 % full, pour outenough sample to bring the container contents within the 70 to80 % range. Under no circumstances shall any sample pouredout be returned to the container

47、.11.1.3 Reseal the container, if necessary, and return thesample container to the cooling bath.11.2 Air Saturation of Sample in Sample Container:11.2.1 Nontransparent ContainersWith the sample againat a temperature between 0 and 1C, take the container fromthe cooling bath, wipe it dry with an absorb

48、ent material,remove the cap momentarily taking care that no water enters,reseal, and shake vigorously. Return it to the cooling bath fora minimum of 2 min.11.2.2 Transparent ContainersSince 11.1 does not requirethat the sample container be opened to verify the samplecapacity, it is necessary to unse

49、al the cap momentarily beforeresealing it so that samples in transparent containers are treatedthe same as samples in nontransparent containers. After per-forming this task, proceed with 11.2.1.11.2.3 Repeat 11.2.1 twice more. Return the sample to thebath until the beginning of the procedure.11.3 Preparation of Liquid ChamberCompletely immersethe open liquid chamber in an upright position and the sampletransfer connection (see Fig. A1.2) in a bath at a temperaturebetween 0 and 1C (32 and 34F) for at least 10 min.11.4 Pre

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1