ImageVerifierCode 换一换
格式:PDF , 页数:16 ,大小:292.77KB ,
资源ID:511960      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-511960.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D613-2010a Standard Test Method for Cetane Number of Diesel Fuel Oil《十六烷法测定柴油燃料燃烧质量的标准试验方法》.pdf)为本站会员(eventdump275)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D613-2010a Standard Test Method for Cetane Number of Diesel Fuel Oil《十六烷法测定柴油燃料燃烧质量的标准试验方法》.pdf

1、Designation: D613 10aDesignation: 41/2000Standard Test Method forCetane Number of Diesel Fuel Oil1This standard is issued under the fixed designation D613; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision.

2、A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope*1.1 This test method covers the determination of the ra

3、tingof diesel fuel oil in terms of an arbitrary scale of cetanenumbers using a standard single cylinder, four-stroke cycle,variable compression ratio, indirect injected diesel engine.1.2 The cetane number scale covers the range from zero (0)to 100, but typical testing is in the range of 30 to 65 cet

4、anenumber.1.3 The values for operating conditions are stated in SI unitsand are to be regarded as the standard. The values given inparentheses are the historical inch-pound units for informationonly. In addition, the engine measurements continue to be ininch-pound units because of the extensive and

5、expensivetooling that has been created for these units.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility

6、 of regulatory limitations prior to use. For more specificwarning statements, see Annex A1.2. Referenced Documents2.1 ASTM Standards:2D975 Specification for Diesel Fuel OilsD1193 Specification for Reagent WaterD2500 Test Method for Cloud Point of Petroleum ProductsD4057 Practice for Manual Sampling

7、of Petroleum andPetroleum ProductsD4175 Terminology Relating to Petroleum, PetroleumProducts, and LubricantsD4177 Practice for Automatic Sampling of Petroleum andPetroleum ProductsE456 Terminology Relating to Quality and StatisticsE542 Practice for Calibration of Laboratory VolumetricApparatusE832 S

8、pecification for Laboratory Filter Papers3. Terminology3.1 Definitions:3.1.1 accepted reference value (ARV), na value thatserves as an agreed-upon reference for comparison, and whichis derived as: (1) a theoretical or established value, based onscientific principles, or (2) an assigned or certified

9、value, basedon experimental work of some national or international orga-nization, or (3) a consensus or certified value, based oncollaborative experimental work under the auspices of ascientific or engineering group. E4563.1.1.1 DiscussionIn the context of this test method,accepted reference value i

10、s understood to apply to the cetanenumber of specific reference materials determined empiricallyunder reproducibility conditions by the National ExchangeGroup or another recognized exchange testing organization.3.1.2 cetane number (CN), na measure of the ignitionperformance of a diesel fuel oil obta

11、ined by comparing it toreference fuels in a standardized engine test. D41753.1.2.1 DiscussionIn the context of this test method,ignition performance is understood to mean the ignition delayof the fuel as determined in a standard test engine undercontrolled conditions of fuel flow rate, injection tim

12、ing andcompression ratio.3.1.3 compression ratio (CR), nthe ratio of the volume ofthe combustion chamber including the precombustion chamberwith the piston at bottom dead center to the comparable volumewith the piston at top dead center.1This test method is under the jurisdiction of ASTM Committee D

13、02 onPetroleum Products and Lubricants and is the direct responsibility of SubcommitteeD02.01 on Combustion Characteristics.Current edition approved Oct. 1, 2010. Published November 2010. Originallyapproved in 1941. Last previous edition approved in 2010 as D61310. DOI:10.1520/D0613-10A.2For referen

14、ced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1*A Summary of Changes section appears at the end of this standard.Copyri

15、ght ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.3.1.4 ignition delay, nthat period of time, expressed indegrees of crank angle rotation, between the start of fuelinjection and the start of combustion.3.1.5 injection timing (injection advanc

16、e), nthat time inthe combustion cycle, measured in degrees of crank angle, atwhich fuel injection into the combustion chamber is initiated.3.1.6 repeatability conditions, nconditions where inde-pendent test results are obtained with the same method onidentical test items in the same laboratory by th

17、e same operatorusing the same equipment within short intervals of time.E4563.1.6.1 DiscussionIn the context of this test method, ashort time interval between two ratings on a sample fuel isunderstood to be not less than the time to obtain at least onerating on another sample fuel between them but no

18、t so long asto permit any significant change in the sample fuel, testequipment, or environment.3.1.7 reproducibility conditions, nconditions where testresults are obtained with the same method on identical testitems in different laboratories with different operators usingdifferent equipment. E4563.2

19、 Definitions of Terms Specific to This Standard:3.2.1 cetane meter (ignition delay meter), nthe electronicinstrument which displays injection advance and ignition delayderived from input pulses of multiple transducers (pickups).3.2.2 Check Fuels, nfor quality control testing, a dieselfuel oil of sel

20、ected characteristics having a cetane numberaccepted reference value determined by round-robin testingunder reproducibility conditions.3.2.3 combustion pickup, npressure transducer exposed tocylinder pressure to indicate the start of combustion.3.2.4 handwheel reading, nan arbitrary numerical value,

21、related to compression ratio, obtained from a micrometer scalethat indicates the position of the variable compression plug inthe precombustion chamber of the engine.3.2.5 injector opening pressure, nthe fuel pressure thatovercomes the resistance of the spring which normally holdsthe nozzle pintle cl

22、osed, and thus forces the pintle to lift andrelease an injection spray from the nozzle.3.2.6 injector pickup, ntransducer to detect motion of theinjector pintle, thereby indicating the beginning of injection.3.2.7 primary reference fuels (PRF), nn-cetane, heptam-ethyl nonane (HMN) and volumetrically

23、 proportioned mixturesof these materials which now define the cetane number scale bythe relationship:Cetane Number 5 % n2cetane 1 0.15 % HMN! (1)3.2.7.1 DiscussionIn the context of this test method, thearbitrary cetane number scale was originally defined as thevolume percent of n-cetane in a blend w

24、ith alpha-methylnaphthalene (AMN) where n-cetane had an assignedvalue of 100 and AMN an assigned value of zero (0). A changefrom alpha-methylnaphthalene to heptamethylnonane as thelow cetane ingredient was made in 1962 to utilize a material ofbetter storage stability and availability. Heptamethylnon

25、anewas determined to have a cetane number accepted referencevalue (CNARV) of 15 based on engine testing by the ASTMDiesel National Exchange Group, using blends of n-cetane andAMN as primary reference fuels.3.2.7.2 DiscussionIn the context of this test method, theDiesel National Exchange Group of Sub

26、committee D02.013iscomposed of petroleum industry, governmental, and indepen-dent laboratories. It conducts regular monthly exchange sampleanalyses to generate precision data for this engine test standardand determines the CNARVof reference materials used by alllaboratories.3.2.8 reference pickups,

27、ntransducer(s) mounted over theflywheel of the engine, triggered by a flywheel indicator, usedto establish a top-dead-center (tdc) reference and a time basefor calibration of the ignition delay meter.3.2.9 secondary reference fuels (SRF), nvolumetricallyproportioned blends of two selected, numbered,

28、 and pairedhydrocarbon mixtures designated T Fuel (high cetane) and UFuel (low cetane) that have been rated by the ASTM DieselNational Exchange Group using primary reference fuels todetermine a cetane number accepted reference value for eachindividually and for various combinations of the two.3.3 Ab

29、breviations:3.3.1 ABDCafter bottom dead center3.3.2 AMNalpha-methylnaphthalene3.3.3 ARVaccepted reference value3.3.4 ATDCafter top dead center3.3.5 BBDCbefore bottom dead center3.3.6 BTDCbefore top dead center3.3.7 CNcetane number3.3.8 CRcompression ratio3.3.9 HMNheptamethyl nonane3.3.10 HRFhigh ref

30、erence fuel3.3.11 HWhand wheel3.3.12 IATintake air temperature3.3.13 LRFlow reference fuel3.3.14 NEGNational Exchange Group3.3.15 PRFprimary reference fuels3.3.16 SRFsecondary reference fuels3.3.17 TDCtop dead center3.3.18 UVultraviolet4. Summary of Test Method4.1 The cetane number of a diesel fuel

31、oil is determined bycomparing its combustion characteristics in a test engine withthose for blends of reference fuels of known cetane numberunder standard operating conditions. This is accomplishedusing the bracketing handwheel procedure which varies thecompression ratio (handwheel reading) for the

32、sample and eachof two bracketing reference fuels to obtain a specific ignitiondelay permitting interpolation of cetane number in terms ofhandwheel reading.5. Significance and Use5.1 The cetane number provides a measure of the ignitioncharacteristics of diesel fuel oil in compression ignition en-gine

33、s.3Bylaws governing ASTM Subcommittee D02.01 on Combustion Characteris-tics are available from the subcommittee or from ASTM International.D613 10a25.2 This test method is used by engine manufacturers,petroleum refiners and marketers, and in commerce as aprimary specification measurement related to

34、matching of fuelsand engines.5.3 Cetane number is determined at constant speed in aprecombustion chamber type compression ignition test engine.The relationship of test engine performance to full scale,variable speed, variable load engines is not completely under-stood.5.4 This test method may be use

35、d for unconventional fuelssuch as synthetics, vegetable oils, and the like. However, therelationship to the performance of such materials in full scaleengines is not completely understood.6. Interferences6.1 (WarningAvoid exposure of sample fuels and refer-ence fuels to sunlight or fluorescent lamp

36、UV emissions tominimize induced chemical reactions that can affect cetanenumber ratings.)46.1.1 Exposure of these fuels to UV wavelengths shorterthan 550 nm for a short period of time may significantly affectcetane number ratings.6.2 Certain gases and fumes present in the area where thecetane test e

37、ngine is located may have a measurable effect onthe cetane number test result.6.3 This test method is not suitable for rating diesel fuel oilswith fluid properties that interfere with unimpeded gravity flowof fuel to the fuel pump or delivery through the injector nozzle.7. Apparatus7.1 Engine Equipm

38、ent5,6This test method uses a singlecylinder engine which consists of a standard crankcase withfuel pump assembly, a cylinder with separate head assembly ofthe precombustion type, thermal syphon recirculating jacketcoolant system, multiple fuel tank system with selector valv-ing, injector assembly w

39、ith specific injector nozzle, electricalcontrols, and a suitable exhaust pipe. The engine is beltconnected to a special electric power-absorption motor whichacts as a motor driver to start the engine and as a means toabsorb power at constant speed when combustion is occurring(engine firing). See Fig

40、. 1 and Table 1.7.2 Instrumentation5,6This test method uses an electronicinstrument to measure injection and ignition delay timing aswell as conventional thermometry, gages and general purposemeters.7.2.1 Cetane Meter, (Ignition Delay Meter) is critical andshall be used for this test method.7.3 Refe

41、rence Fuel Dispensing EquipmentThis testmethod requires repeated blending of two secondary referencefuel materials in volumetric proportions on an as-needed basis.Measurement shall be performed accurately because ratingerror is proportional to blending error.7.3.1 Volumetric Blending of Reference Fu

42、elsVolumetricblending has historically been employed to prepare the re-quired blends of reference fuels. For volumetric blending, a setof two burets or accurate volumetric ware shall be used and thedesired batch quantity shall be collected in an appropriatecontainer and thoroughly mixed before being

43、 introduced to theengine fuel system.7.3.1.1 Calibrated burets or volumetric ware having a ca-pacity of 400 or 500 mL and a maximum volumetric toleranceof 60.2 % shall be used. Calibration shall be verified inaccordance with Practice E542.7.3.1.2 Calibrated burets shall be outfitted with a dispensin

44、gvalve and delivery tip to accurately control dispensed volume.The delivery tip shall be of such size and design that shutoff tipdischarge does not exceed 0.5 mL.7.3.1.3 The rate of delivery from the dispensing systemshall not exceed 500 mL per 60 s.7.3.1.4 The set of burets for the reference and st

45、andardiza-tion fuels shall be installed in such a manner and be suppliedwith fluids such that all components of each batch or blend aredispensed at the same temperature.7.3.1.5 See Appendix X1, Volumetric Reference FuelBlending Apparatus and Procedures, for typical dispensingsystem information.7.3.2

46、 Gravimetric Blending of Reference FuelsUse ofblending systems that allow preparation of the volumetrically-defined blends by gravimetric (mass) measurements based onthe density of the individual components is also permitted,provided the system meets the requirement for maximum0.2 % blending toleran

47、ce limits.7.3.2.1 Calculate the mass equivalents of thevolumetrically-defined blend components from the densities ofthe individual components at 15.56C (60F).7.4 Auxiliary Apparatus:7.4.1 Injector Nozzle TesterThe injector nozzle assemblyshall be checked whenever the injector nozzle is removed andre

48、assembled to ensure the initial pressure at which fuel isdischarged from the nozzle is properly set. It is also importantto inspect the type of spray pattern. Commercial injector nozzletesters which include a lever-operated pressure cylinder, fuelreservoir and pressure gauge are available from sever

49、al sourcesas common diesel engine maintenance equipment.7.4.2 Special Maintenance ToolsA number of specialtytools and measuring instruments should be utilized for easy,convenient and effective maintenance of the engine and testingequipment. Lists and descriptions of these tools and instru-ments are available from the manufacturers of the engineequipment and those organizations offering engineering andservice support for this test method.8. Reagents and Reference Materials8.1 Cylinder Jacket CoolantWater shall be used in thecylinder j

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1