ImageVerifierCode 换一换
格式:PDF , 页数:27 ,大小:517.83KB ,
资源ID:512336      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-512336.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D86-2009e1 Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure.pdf)为本站会员(appealoxygen216)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D86-2009e1 Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure.pdf

1、Designation: D 86 091An American National StandardStandard Test Method forDistillation of Petroleum Products at Atmospheric Pressure1This standard is issued under the fixed designation D 86; the number immediately following the designation indicates the year of originaladoption or, in the case of re

2、vision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscriptepsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1NOTEUpdated Table X2.1 title

3、 to match appendix text editorially in June 2009.1. Scope*1.1 This test method covers the atmospheric distillation ofpetroleum products using a laboratory batch distillation unit todetermine quantitatively the boiling range characteristics ofsuch products as light and middle distillates, automotives

4、park-ignition engine fuels, automotive spark-ignition enginefuels containing up to 10 % ethanol, aviation gasolines, avia-tion turbine fuels, 1-D and 2-D diesel fuels, biodiesel blends upto 20 %, marine fuels, special petroleum spirits, naphthas,white spirits, kerosines, and Grades 1 and 2 burner fu

5、els.1.2 The test method is designed for the analysis of distillatefuels; it is not applicable to products containing appreciablequantities of residual material.1.3 This test method covers both manual and automatedinstruments.1.4 Unless otherwise noted, the values stated in SI units areto be regarded

6、 as the standard. The values given in parenthesesare provided for information only.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and

7、determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 All standards are subject to revision, and parties toagreement on this test method are to apply the most recentedition of the standards indicated below, unless otherwisespecified, such as in contractual ag

8、reements or regulatory ruleswhere earlier versions of the method(s) identified may berequired.2.2 ASTM Standards:2D97 Test Method for Pour Point of Petroleum ProductsD 323 Test Method for Vapor Pressure of Petroleum Prod-ucts (Reid Method)D 4057 Practice for Manual Sampling of Petroleum andPetroleum

9、 ProductsD 4177 Practice for Automatic Sampling of Petroleum andPetroleum ProductsD 4953 Test Method for Vapor Pressure of Gasoline andGasoline-Oxygenate Blends (Dry Method)D 5190 Test Method for Vapor Pressure of Petroleum Prod-ucts (Automatic Method)D 5191 Test Method for Vapor Pressure of Petrole

10、um Prod-ucts (Mini Method)D 5842 Practice for Sampling and Handling of Fuels forVolatility MeasurementD 5949 Test Method for Pour Point of Petroleum Products(Automatic Pressure Pulsing Method)D 5950 Test Method for Pour Point of Petroleum Products(Automatic Tilt Method)D 5985 Test Method for Pour Po

11、int of Petroleum Products(Rotational Method)D 6300 Practice for Determination of Precision and BiasData for Use in Test Methods for Petroleum Products andLubricantsE1 Specification for ASTM Liquid-in-Glass ThermometersE77 Test Method for Inspection and Verification of Ther-mometersE 1272 Specificati

12、on for Laboratory Glass Graduated Cyl-indersE 1405 Specification for Laboratory Glass DistillationFlasks2.3 Energy Institute Standards:31This test method is under the jurisdiction of ASTM Committee D02 onPetroleum Products and Lubricants and is the direct responsibility of SubcommitteeD02.08 on Vola

13、tility.In the IP, the equivalent test method is published under the designation IP 123.It is under the jurisdiction of the Standardization Committee.Current edition approved April 15, 2009. Published April 2009. Originallyapproved in 1921. Last previous edition approved in 2008 as D 8608a.2For refer

14、enced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from Energy Institute, 61 New Cavendish St., London, WIG 7AR

15、,U.K., http:/www.energyinst.org.uk.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.IP 69 Determination of Vapour PressureReid MethodIP 123 Petroleum ProductsDeterminat

16、ion of DistillationCharacteristicsIP 394 Determination of Air Saturated Vapour PressureIP Standard Methods for Analysis and Testing of Petroleumand Related Products 1996Appendix A3. Terminology3.1 Definitions:3.1.1 charge volume, nthe volume of the specimen, 100mL, charged to the distillation flask

17、at the temperature speci-fied in Table 1.3.1.2 decomposition, nof a hydrocarbon, the pyrolysis orcracking of a molecule yielding smaller molecules with lowerboiling points than the original molecule.3.1.2.1 DiscussionCharacteristic indications of thermaldecomposition are evolution of fumes and errat

18、ic temperaturereadings that usually decrease after any attempt is made toadjust the heat.3.1.3 decomposition point, nthe corrected thermometerreading that coincides with the first indications of thermaldecomposition of the liquid in the flask.3.1.3.1 DiscussionThe decomposition point, as deter-mined

19、 under the conditions of this test method, does notnecessarily correspond to the decomposition temperature inother applications.3.1.4 dry point, nthe corrected thermometer reading thatis observed at the instant the last drop of liquid (exclusive ofany drops or film of liquid on the side of the flask

20、 or on thetemperature sensor), evaporates from the lowest point in thedistillation flask.3.1.4.1 DiscussionThe end point (final boiling point),rather than the dry point, is intended for general use. The drypoint can be reported in connection with special purposenaphthas, such as those used in the pa

21、int industry. Also, it issubstituted for the end point (final boiling point) whenever thesample is of such a nature that the precision of the end point(final boiling point) cannot consistently meet the requirementsgiven in the precision section.3.1.5 dynamic holdup, nthe amount of material present i

22、nthe neck of the flask, in the sidearm of the flask, and in thecondenser tube during the distillation.3.1.6 emergent stem effect, nthe offset in temperaturereading caused by the use of total immersion mercury-in-glassthermometers in the partial immersion mode.3.1.6.1 DiscussionIn the partial immersi

23、on mode, a por-tion of the mercury thread, that is, the emergent portion, is ata lower temperature than the immersed portion, resulting in ashrinkage of the mercury thread and a lower temperaturereading.3.1.7 end point (EP) or final boiling point (FBP), nthemaximum corrected thermometer reading obta

24、ined during thetest.3.1.7.1 DiscussionThis usually occurs after the evapora-tion of all liquid from the bottom of the flask. The termmaximum temperature is a frequently used synonym.3.1.8 front end loss, nloss due to evaporation duringtransfer from receiving cylinder to distillation flask, vapor los

25、sduring the distillation, and uncondensed vapor in the flask atthe end of the distillation.3.1.9 initial boiling point (IBP), nthe corrected thermom-eter reading that is observed at the instant the first drop ofcondensate falls from the lower end of the condenser tube.3.1.10 percent evaporated, nthe

26、 sum of the percent re-covered and the percent loss.3.1.11 percent loss (or observed loss), none hundredminus the percent total recovery.3.1.11.1 corrected loss, npercent loss corrected for baro-metric pressure.3.1.12 percent recovered, nthe volume of condensateobserved in the receiving cylinder, ex

27、pressed as a percentage ofthe charge volume, associated with a simultaneous temperaturereading.3.1.13 percent recovery, nthe maximum percent recov-ered, as observed in accordance with 10.18.3.1.13.1 corrected percent recovery, nthe percent recov-ery, adjusted for the difference between the observed

28、loss andthe corrected loss, as described in Eq 8.3.1.13.2 percent total recovery, nthe combined percentrecovery and residue in the flask, as determined in accordancewith 11.1.3.1.14 percent residue, nthe volume of residue in theflask, measured in accordance with 10.19, and expressed as apercentage o

29、f the charge volume.3.1.15 rate of change (or slope), nthe change in tempera-ture reading per percent evaporated or recovered, as describedin 13.2.TABLE 1 Preparation of Apparatus and SpecimenGroup 1 Group 2 Group 3 Group 4Flask, mL 125 125 125 125ASTM distillation thermometer 7C (7F) 7C (7F) 7C (7F

30、) 8C (8F)IP distillation thermometer range low low low highFlask support board B B C Cdiameter of hole, mm 38 38 50 50Temperature at start of testFlask C 1318 1318 1318 not aboveF 5565 5565 5565 ambientFlask support and shield not above not above not aboveambient ambient ambientReceiving cylinder an

31、d sampleC 1318 1318 1318A13ambientAF 5565 5565 5565A55ambientAASee 10.3.1.1 for exceptions.D8609123.1.16 temperature lag, nthe offset between the tempera-ture reading obtained by a temperature sensing device and thetrue temperature at that time.3.1.17 temperature measurement device, na thermometer,a

32、s described in 6.3.1, or a temperature sensor, as described in6.3.2.3.1.18 temperature reading, nthe temperature obtained bya temperature measuring device or system that is equal to thethermometer reading described in 3.1.19.3.1.18.1 corrected temperature reading, nthe temperaturereading, as describ

33、ed in 3.1.18, corrected for barometricpressure.3.1.19 thermometer reading (or thermometer result), nthetemperature of the saturated vapor measured in the neck of theflask below the vapor tube, as determined by the prescribedthermometer under the conditions of the test.3.1.19.1 corrected thermometer

34、reading, nthe thermom-eter reading, as described in 3.1.19, corrected for barometricpressure.4. Summary of Test Method4.1 Based on its composition, vapor pressure, expected IBPor expected EP, or combination thereof, the sample is placed inone of four groups. Apparatus arrangement, condenser tem-pera

35、ture, and other operational variables are defined by thegroup in which the sample falls.4.2 A 100-mL specimen of the sample is distilled underprescribed conditions for the group in which the sample falls.The distillation is performed in a laboratory batch distillationunit at ambient pressure under c

36、onditions that are designed toprovide approximately one theoretical plate fractionation. Sys-tematic observations of temperature readings and volumes ofcondensate are made, depending on the needs of the user of thedata. The volume of the residue and the losses are alsorecorded.4.3 At the conclusion

37、of the distillation, the observed vaportemperatures can be corrected for barometric pressure and thedata are examined for conformance to procedural require-ments, such as distillation rates. The test is repeated if anyspecified condition has not been met.4.4 Test results are commonly expressed as pe

38、rcent evapo-rated or percent recovered versus corresponding temperature,either in a table or graphically, as a plot of the distillationcurve.5. Significance and Use5.1 The basic test method of determining the boiling rangeof a petroleum product by performing a simple batch distilla-tion has been in

39、use as long as the petroleum industry hasexisted. It is one of the oldest test methods under the jurisdic-tion of ASTM Committee D02, dating from the time when itwas still referred to as the Engler distillation. Since the testmethod has been in use for such an extended period, atremendous number of

40、historical data bases exist for estimatingend-use sensitivity on products and processes.5.2 The distillation (volatility) characteristics of hydrocar-bons have an important effect on their safety and performance,especially in the case of fuels and solvents. The boiling rangegives information on the

41、composition, the properties, and thebehavior of the fuel during storage and use. Volatility is themajor determinant of the tendency of a hydrocarbon mixture toproduce potentially explosive vapors.5.3 The distillation characteristics are critically importantfor both automotive and aviation gasolines,

42、 affecting starting,warm-up, and tendency to vapor lock at high operatingtemperature or at high altitude, or both. The presence of highboiling point components in these and other fuels can signifi-cantly affect the degree of formation of solid combustiondeposits.5.4 Volatility, as it affects rate of

43、 evaporation, is an impor-tant factor in the application of many solvents, particularlythose used in paints.5.5 Distillation limits are often included in petroleum prod-uct specifications, in commercial contract agreements, processrefinery/control applications, and for compliance to regulatoryrules.

44、6. Apparatus6.1 Basic Components of the Apparatus:6.1.1 The basic components of the distillation unit are thedistillation flask, the condenser and associated cooling bath, ametal shield or enclosure for the distillation flask, the heatsource, the flask support, the temperature measuring device,and t

45、he receiving cylinder to collect the distillate.6.1.2 Figs. 1 and 2 are examples of manual distillation units.6.1.3 In addition to the basic components described in 6.1.1,automated units also are equipped with a system to measureand automatically record the temperature and the associatedrecovered vo

46、lume in the receiving cylinder.6.2 Adetailed description of the apparatus is given inAnnexA2.6.3 Temperature Measuring Device:FIG. 1 Apparatus Assembly Using Gas BurnerD8609131Condenser bath 11Distillation flask2Bath cover 12Temperature sensor3Bath temperature sensor 13Flask support board4Bath overf

47、low 14Flask support platform5Bath drain 15Ground connection6Condenser tube 16Electric heater7Shield 17Knob for adjusting level8Viewing window of support platform9aVoltage regulator 18Power source cord9bVoltmeter or ammeter 19Receiver cylinder9cPower switch 20Receiver cooling bath9dPower light indica

48、tor 21Receiver cover10VentFIG. 2 Apparatus Assembly Using Electric HeaterD8609146.3.1 Mercury-in-glass thermometers, if used, shall be filledwith an inert gas, graduated on the stem and enamel backed.They shall conform to Specification E1 or IP StandardMethods for Analysis and Testing of Petroleum a

49、nd RelatedProducts 1996AppendixA, or both, for thermometersASTM7C/IP 5C and ASTM 7F for the low range thermometers, andASTM 8C/IP 6C and ASTM 8F for the high range thermom-eters.6.3.1.1 Thermometers that have been exposed for an ex-tended period above an observed temperature of 370C shallnot be reused without a verification of the ice point or checkedas prescribed in Specification E1and Test Method E77.NOTE 1At an observed thermometer reading of 370C, the tempera-ture of the bulb is approaching a cr

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1