ImageVerifierCode 换一换
格式:PDF , 页数:18 ,大小:238.99KB ,
资源ID:512533      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-512533.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D93-2013e1 Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester《用潘斯基-马丁斯仪闭杯试验器测定闪点的标准试验方法》.pdf)为本站会员(eventdump275)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D93-2013e1 Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester《用潘斯基-马丁斯仪闭杯试验器测定闪点的标准试验方法》.pdf

1、Designation: D93 131Designation: 34/99Standard Test Methods forFlash Point by Pensky-Martens Closed Cup Tester1This standard is issued under the fixed designation D93; the number immediately following the designation indicates the year of originaladoption or, in the case of revision, the year of las

2、t revision. A number in parentheses indicates the year of last reapproval. A superscriptepsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S. Department of Defense.1NOTEEditorially revised 15.1 in February 2014.

3、INTRODUCTIONThis flash point test method is a dynamic test method which depends on specified rates of heatingto be able to meet the precision of the test method. The rate of heating may not in all cases give theprecision quoted in the test method because of the low thermal conductivity of some mater

4、ials. Thereare flash point test methods with slower heating rates available, such as Test Method D3941 (forpaints, resins, and related products, and high viscosity products in the range of 0 to110C), where thetest conditions are closer to equilibrium.Flash point values are a function of the apparatu

5、s design, the condition of the apparatus used, andthe operational procedure carried out. Flash point can therefore only be defined in terms of a standardtest method, and no general valid correlation can be guaranteed between results obtained by differenttest methods, or with test apparatus different

6、 from that specified.1. Scope*1.1 These test methods cover the determination of the flashpoint of petroleum products in the temperature range from 40to 370C by a manual Pensky-Martens closed-cup apparatus oran automated Pensky-Martens closed-cup apparatus, and thedetermination of the flash point of

7、biodiesel in the temperaturerange of 60 to 190C by an automated Pensky-Martens closedcup apparatus.NOTE 1Flash point determinations above 250C can be performed,however, the precision has not been determined above this temperature.For residual fuels, precision has not been determined for flash points

8、above 100C. The precision of in-use lubricating oils has not beendetermined. Some specifications state a D93 minimum flash point below40C, however, the precision has not been determined below thistemperature.1.2 Procedure A is applicable to distillate fuels (diesel,biodiesel blends, kerosine, heatin

9、g oil, turbine fuels), new andin-use lubricating oils, and other homogeneous petroleumliquids not included in the scope of Procedure B or ProcedureC.1.3 Procedure B is applicable to residual fuel oils, cutbackresidua, used lubricating oils, mixtures of petroleum liquidswith solids, petroleum liquids

10、 that tend to form a surface filmunder test conditions, or are petroleum liquids of such kine-matic viscosity that they are not uniformly heated under thestirring and heating conditions of Procedure A.1.4 Procedure C is applicable to biodiesel (B100). Since aflash point of residual alcohol in biodie

11、sel is difficult to observeby manual flash point techniques, automated apparatus withelectronic flash point detection have been found suitable.1.5 These test methods are applicable for the detection ofcontamination of relatively nonvolatile or nonflammable ma-terials with volatile or flammable mater

12、ials.1.6 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are for informationonly.NOTE 2It has been common practice in flash point standards for manydecades to alternately use a Cscale or an Fscale thermometer fortemperature measurement. Although the s

13、cales are close in increments,they are not equivalent. Because the Fscale thermometer used in thisprocedure is graduated in 5 increments, it is not possible to read it to the2C equivalent increment of 3.6F. Therefore, for the purposes ofapplication of the procedure of the test method for the separat

14、e tempera-ture scale thermometers, different increments must be used. In this testmethod, the following protocol has been adopted: When a temperature isintended to be a converted equivalent, it will appear in parenthesesfollowing the SI unit, for example 370C (698F). When a temperature is1These test

15、 methods are under the joint jurisdiction ofASTM Committee D02 onPetroleum Products, Liquid Fuels, and Lubricants and are the direct responsibilityof Subcommittee D02.08 on Volatility. In the IP, these test methods are under thejurisdiction of the Standardization Committee.Current edition approved J

16、uly 15, 2013. Published August 2013. Originallyapproved in 1921. Last previous edition approved in 2012 as D93 12. DOI:10.1520/D0093-13E01.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-29

17、59. United States1intended to be a rationalized unit for the alternate scale, it will appear after“or,” for example, 2C or 5F.1.7 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish ap

18、pro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For specificwarning statements, see 6.4, 7.1, 9.3, 9.4, 11.1.2, 11.1.4, 11.1.8,11.2.2, and 12.1.2.2. Referenced Documents2.1 ASTM Standards:2D56 Test Method for Flash Point by Tag Closed C

19、up TesterD3941 Test Method for Flash Point by the EquilibriumMethod With a Closed-Cup ApparatusD4057 Practice for Manual Sampling of Petroleum andPetroleum ProductsD4177 Practice for Automatic Sampling of Petroleum andPetroleum ProductsE1 Specification for ASTM Liquid-in-Glass ThermometersE300 Pract

20、ice for Sampling Industrial ChemicalsE502 Test Method for Selection and Use of ASTM Stan-dards for the Determination of Flash Point of Chemicalsby Closed Cup Methods2.2 ISO Standards3Guide 34 Quality Systems Guidelines for the Production ofReference MaterialsGuide 35 Certification of Reference Mater

21、ialGeneral andStatistical Principles3. Terminology3.1 Definitions:3.1.1 biodiesel, na fuel comprised of mono-alkyl esters oflong chain fatty acids derived from vegetable oils or animalfats, designated B100.3.1.2 biodiesel blends, na blend of biodiesel fuel withpetroleum-based diesel fuel.3.1.3 dynam

22、ic, adjin petroleum productsin petroleumproduct flash point test methodsthe condition where thevapor above the test specimen and the test specimen are not intemperature equilibrium at the time that the ignition source isapplied.3.1.3.1 DiscussionThis is primarily caused by the heatingof the test spe

23、cimen at the constant prescribed rate with thevapor temperature lagging behind the test specimen tempera-ture.3.1.4 equilibrium, n in petroleum productsin petroleumproduct flash point test methodsthe condition where thevapor above the test specimen and the test specimen are at thesame temperature at

24、 the time the ignition source is applied.3.1.4.1 DiscussionThis condition may not be fullyachieved in practice, since the temperature may not be uniformthroughout the test specimen, and the test cover and shutter onthe apparatus can be cooler.3.1.5 flash point, n in petroleum products, the lowesttem

25、perature corrected to a barometric pressure of 101.3 kPa(760 mm Hg), at which application of an ignition source causesthe vapors of a specimen of the sample to ignite under specifiedconditions of test.4. Summary of Test Method4.1 A brass test cup of specified dimensions, filled to theinside mark wit

26、h test specimen and fitted with a cover ofspecified dimensions, is heated and the specimen stirred atspecified rates, using one of three defined procedures (A, B, orC). An ignition source is directed into the test cup at regularintervals with simultaneous interruption of the stirring, until aflash i

27、s detected (see 11.1.8). The flash point is reported asdefined in 3.1.5.5. Significance and Use5.1 The flash point temperature is one measure of thetendency of the test specimen to form a flammable mixturewith air under controlled laboratory conditions. It is only oneof a number of properties which

28、must be considered inassessing the overall flammability hazard of a material.5.2 Flash point is used in shipping and safety regulations todefine flammable and combustible materials. One should con-sult the particular regulation involved for precise definitions ofthese classifications.NOTE 3The U.S.

29、Department of Transportation (DOT)4and U.S.Department of Labor (OSHA) have established that liquids with a flashpoint under 37.8C (100F) (see Note 1) are flammable, as determined bythese test methods, for those liquids which have a kinematic viscosity of5.8 mm 2/s (cSt) or more at 37.8C or 9.5 mm 2/

30、s (cSt) or more at 25C(77F), or that contain suspended solids, or have a tendency to form asurface film while under test. Other classification flash points have beenestablished by these departments for liquids using these test methods.5.3 These test methods should be used to measure anddescribe the

31、properties of materials, products, or assemblies inresponse to heat and an ignition source under controlledlaboratory conditions and should not be used to describe orappraise the fire hazard or fire risk of materials, products, orassemblies under actual fire conditions. However, results ofthese test

32、 methods may be used as elements of a fire riskassessment which takes into account all of the factors whichare pertinent to an assessment of the fire hazard of a particularend use.5.4 These test methods provide the only closed cup flashpoint test procedures for temperatures up to 370C (698F).2For re

33、ferenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from American National Standards Institute (ANSI), 25 W.

34、43rd St.,4th Floor, New York, NY 10036.4For information on U.S. Department of Transportation regulations, see Codesof U.S. Regulations 49 CFR Chapter 1 and the U.S. Department of Labor, see 29CFR Chapter XVII. Each of these items is revised annually and may be procuredfrom the Superintendent of Docu

35、ments, Government Printing Office, Washington,DC 20402.D9313126. Apparatus6.1 Pensky-Martens Closed Cup Apparatus (manual)This apparatus consists of the test cup, test cover and shutter,stirring device, heating source, ignition source device, air bath,and top plate described in detail in Annex A1. T

36、he assembledmanual apparatus, test cup, test cup cover, and test cupassembly are illustrated in Figs. A1.1-A1.4, respectively. Di-mensions are listed respectively.6.2 Pensky-Martens Closed Cup Apparatus (Automated)5This apparatus is an automated flash point instrument that iscapable of performing th

37、e test in accordance with Section 11(ProcedureA), Section 12 (Procedure B), and 13 (Procedure C)of these test methods. The apparatus shall use the test cup, testcover and shutter, stirring device, heating source, and ignitionsource device described in detail in Annex A1.6.3 Temperature Measuring Dev

38、iceThermometer havinga range as shown as follows and conforming to the require-ments prescribed in Specification E1 or in Annex A3,oranelectronic temperature measuring device, such as resistancethermometers or thermocouples. The device shall exhibit thesame temperature response as the mercury thermo

39、meters.Thermometer NumberTemperature Range ASTM IP5 to +110C (20 to 230F) 9C (9F) 15C+10 to 200C (50 to 392F) 88C (88F) 101C+90 to 370C (200 to 700F) 10C (10F) 16C6.4 Ignition SourceNatural gas flame, bottled gas flame,and electric ignitors (hot wire) have been found acceptable foruse as the ignitio

40、n source. The gas flame device described indetailed in Fig. A1.4 requires the use of the pilot flamedescribed in A1.1.2.3. The electric ignitors shall be of thehot-wire type and shall position the heated section of theignitor in the aperture of the test cover in the same manner asthe gas flame devic

41、e. (WarningGas pressure supplied to theapparatus should not be allowed to exceed 3 kPa (12 in.) ofwater pressure.)6.5 BarometerWith accuracy of 60.5 kPa.NOTE 4The barometric pressure used in this calculation is the ambientpressure for the laboratory at the time of the test. Many aneroidbarometers, s

42、uch as those used at weather stations and airports, areprecorrected to give sea level readings and would not give the correctreading for this test.7. Reagents and Materials7.1 Cleaning SolventsUse suitable solvent capable ofcleaning out the specimen from the test cup and drying the testcup and cover

43、. Some commonly used solvents are toluene andacetone. (WarningToluene, acetone, and many solvents areflammable and a health hazard. Dispose of solvents and wastematerial in accordance with local regulations.)8. Sampling8.1 Obtain a sample in accordance with instructions given inPractices D4057, D417

44、7,orE300.8.2 At least 75 mL of sample is required for each test. Referto Practice D4057. When obtaining a sample of residual fueloil, the sample container shall be from 85 to 95 % full. Forother types of samples, the size of the container shall be chosensuch that the container is not more than 85 %

45、full or less than50 % full prior to any sample aliquot being taken. For biodiesel(B100) samples, a typical one liter container filled to 85%volume is recommended.8.3 Successive test specimens can be taken from the samesample container. Repeat tests have been shown to be withinthe precisions of the m

46、ethod when the second specimen istaken with the sample container at least 50 % filled. The resultsof flash point determinations can be affected if the samplevolume is less than 50 % of sample container capacity.8.4 Erroneously high flash points may be obtained if pre-cautions are not taken to avoid

47、the loss of volatile material. Donot open containers unnecessarily, to prevent loss of volatilematerial or possible introduction of moisture, or both. Avoidstorage of samples at temperatures in excess of 35C or 95F.Samples for storage shall be capped tightly with inner seals. Donot make a transfer u

48、nless the sample temperature is at least theequivalent of 18C or 32F below the expected flash point.8.5 Do not store samples in gas-permeable containers, sincevolatile material may diffuse through the walls of the enclo-sure. Samples in leaky containers are suspect and not a sourceof valid results.8

49、.6 Samples of very viscous materials shall be heated intheir containers, with lid/cap slightly loosened to avoid buildupof dangerous pressure, at the lowest temperature adequate toliquefy any solids, not exceeding 28C or 50F below theexpected flash point, for 30 min. If the sample is then notcompletely liquefied, extend the heating period for additional30 min periods as necessary. Then gently agitate the sample toprovide mixing, such as orbiting the container horizontally,before transferring to the specimen cup. No sampl

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1