ImageVerifierCode 换一换
格式:PDF , 页数:9 ,大小:163.20KB ,
资源ID:512556      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-512556.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D94-2007(2012)e1 Standard Test Methods for Saponification Number of Petroleum Products《石油产品皂化值的标准试验方法》.pdf)为本站会员(吴艺期)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D94-2007(2012)e1 Standard Test Methods for Saponification Number of Petroleum Products《石油产品皂化值的标准试验方法》.pdf

1、Designation: D94 07 (Reapproved 2012)1Designation: 136S1/98, 136S2/99Standard Test Methods forSaponification Number of Petroleum Products1This standard is issued under the fixed designation D94; the number immediately following the designation indicates the year of originaladoption or, in the case o

2、f revision, the year of last revision.Anumber in parentheses indicates the year of last reapproval.Asuperscriptepsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S. Department of Defense.1NOTEThe Research Report

3、 number in 23.1 was corrected editorially in May 2015.1. Scope1.1 These test methods cover the determination of theamount of constituents in petroleum products such aslubricants, additives, and transmission fluids that will saponifyunder the conditions of the test.NOTE 1Statements defining this test

4、 and its significance when appliedto electrical insulating oils of mineral origin will be found in Guide D117.Experience has shown that for transformer oils, Test Method D94,modified by use of 0.1 M KOH solution and 0.1 M HCl, is more suitable.1.1.1 Two test methods are described: Method AColorIndic

5、ator Titration (Sections 613), and MethodBPotentiometric Titration (Sections 1423).1.2 Because compounds of sulfur, phosphorus, thehalogens, and certain other elements that are sometimes addedto petroleum products also consume alkali and acids, theresults obtained indicate the effect of these extran

6、eous materi-als in addition to the saponifiable material present. Results onproducts containing such materials, on used internal-combustion-engine crankcase oils, and on used turbine oilsmust be interpreted with caution.NOTE 2The materials referred to above, which are not normallyconsidered saponifi

7、able matter, include inorganic or certain organic acids,most nonalkali soaps, and so forth. The presence of such materialsincreases the saponification number above that of fatty saponifiablematerials for which the test method is primarily intended. The odor ofhydrogen sulfide near the end of the bac

8、k-titration in the saponificationtest is an indication that certain types of reactive sulfur compounds arepresent in the sample. In the case of other reactive sulfur, chlorine, andphosphorus compounds and other interfering materials, no simple indica-tion is given during the test. A gravimetric dete

9、rmination of the actualamount of fatty acids is probably the most reliable method for suchcompounds. Test Methods D128 or IP Method 284/86 can be used todetermine fatty acids gravimetrically.1.3 The values stated in SI units are to be regarded as thestandard.1.4 This standard does not purport to add

10、ress all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For specific hazardstatements, see Sections 6, 7, 8, 10

11、 15, 16, 17, and 19.2. Referenced Documents2.1 ASTM Standards:2D117 Guide for Sampling, Test Methods, and Specificationsfor Electrical Insulating Oils of Petroleum OriginD128 Test Methods for Analysis of Lubricating GreaseD1193 Specification for Reagent WaterD4057 Practice for Manual Sampling of Pe

12、troleum andPetroleum ProductsD4177 Practice for Automatic Sampling of Petroleum andPetroleum ProductsD6299 Practice for Applying Statistical Quality Assuranceand Control Charting Techniques to Evaluate AnalyticalMeasurement System PerformanceD6792 Practice for Quality System in Petroleum Productsand

13、 Lubricants Testing Laboratories2.2 Energy Institute Standards:3IP 136 Method of Test for Saponification Number of Petro-leum ProductsIP 284 Method of Test for Fatty Acids3. Terminology3.1 Definitions:1These test methods are under the jurisdiction of ASTM Committee D02 onPetroleum Products, Liquid F

14、uels, and Lubricants and are the direct responsibilityof Subcommittee D02.06 on Analysis of Liquid Fuels and Lubricants.Current edition approved Nov. 1, 2012. Published November 2012. Originallyapproved in 1921. Last previous edition approved in 2007 as D9407. DOI:10.1520/D0094-07R12E01.2For referen

15、ced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from Institute of Petroleum, 61 New Cavendish St., London, W.I

16、England.Available from Energy Institute, 61 New Cavendish St., London, WIG7AR, U.K., http:/www.energyinst.org.uk.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13.1.1 saponification number, nthe number of milligramsof potassium hydr

17、oxide consumed by1gofasample under theconditions of the test.3.1.1.1 DiscussionThe value of the saponification numberin these test methods can be affected by the presence of otheralkali-reactive species, as described in Note 2.3.1.2 saponify, vto hydrolyze a fat with alkali to form analcohol and the

18、 salt of a fatty acid.4. Summary of Test Method4.1 A known mass of the sample is dissolved in a suitablesolvent, such as butanone (methylethylketone), xylenes, orStoddard Solvent, or a combination thereof (WarningExtremely flammable. Vapors can cause flash fire), and isheated with a known amount of

19、alcoholic potassium hydroxide(KOH). The excess alkali is titrated with standard acid, and thesaponification number is calculated.4.2 The titration end point can be detected either colori-metrically (Method A) or potentiometrically (Method B).5. Significance and Use5.1 Petroleum products can contain

20、additives that react withalkali to form metal soaps. Fats are examples of such additives.Also, certain used engine oils, especially from turbine orinternal combustion engines, can contain chemicals that willsimilarly react with alkali. The saponification number ex-presses the amount of base that wil

21、l react with1gofsamplewhen heated in a specific manner.This then gives an estimationof the amount of acid present in the sample, that is, any freeacid originally present plus any combined (for example, inesters) that have been converted to metal soaps during theheating procedure.5.2 Saponification n

22、umbers are also used in setting productspecifications for lubricants and additives.METHOD ACOLOR INDICATOR TITRATION6. Apparatus6.1 Erlenmeyer Flask and Condenser An Erlenmeyerflask, 250 or 300-mL capacity, alkali-resistant (see Note 3) and(WarningCauses severe burns; a recognized carcinogen;strong

23、oxidizercontact with other material can cause fire;hygroscopic ), to which is attached a straight or mushroom-type reflux condenser. The straight-type condenser is fitted tothe flask with a ground-glass joint; the mushroom-type con-denser must fit loosely to permit venting of the flask. Waterreflux

24、condensers can also be used instead of air condensers.NOTE 3Do not use scratched or etched Erlenmeyer flasks becauseKOH will react with them. The glassware shall be chemically clean. It isrecommended that flasks be cleaned with chromic acid cleaning solution(Alternatively, Nochromix or similar produ

25、cts can be used.)6.2 Hot PlateA suitable hot plate heated by either elec-tricity or steam. (WarningThermal hazard; in addition toother precautions, avoid contact with exposed skin.)7. Reagents7.1 Purity of ReagentsReagent grade chemicals shall beused in all tests. Unless otherwise indicated, it is i

26、ntended thatall reagents shall conform to the specifications of the Commit-tee on Analytical Reagents of the American Chemical Society,where such specifications are available.4Other grades may beused, provided it is first ascertained that the reagent is ofsufficiently high purity to permit its use w

27、ithout lessening theaccuracy of the determination.NOTE 4Commercially available reagents may be used in place oflaboratory preparations, provided they meet the specifications outlined.7.2 Purity of WaterUnless otherwise indicated, referencesto water shall be understood to mean reagent water as define

28、dby Type I, II, or III in Specification D1193.7.3 Alcohol595 % ethanol (WarningFlammable.DenaturedCannot be made nontoxic) (see Note 5) and(WarningFlammable) or 95 % ethanol to which has beenadded 10 volume % of methanol (see Note 5 and Note 6)orabsolute alcohol.NOTE 5It has been found that 99 % 2-p

29、ropanol (isopropyl alcohol)can be substituted for the purified ethanol with entirely satisfactory results.This substitution is not permissible, however, in referee tests.NOTE 6This composition is available under the name of “U.S.Department of Treasury Specially Denatured Formula 30 (Regulation No.3-

30、1938).”5Formula 3A plus 5 % methanol is an equivalent.7.4 Aqueous Hydrochloric Acid Standard Solution (0.5M)Standardize to detect molarity changes of 0.0005 bytitrating with standard alcoholic KOH solution (see 7.8 andNote 7).NOTE 7Where saponification numbers below one are expected, betterprecision

31、 can be obtained by substituting 0.1 M KOH solution and HCl forthe 0.5 M reagents in Sections 7, 8, 10, 17, and 19.7.5 Butanone (Methyl Ethyl Ketone) , technical grade. Storein dark or brown bottles. (Warning See 4.1.)7.6 Naphtha, (Warning Extremely flammable. Harmfulif inhaled. Vapors can cause fla

32、sh fire.) ASTM PrecipitationGrade (or Petroleum Spirit-60/80 or hexanes) (WarningCombustible. Vapor harmful.) Petroleum spirit shall conformto the current IP 136.7.7 Phenolphthalein Solution, NeutralizedDissolve 1.0 60.1 g of phenolphthalein in 100 mL of alcohol (see 7.3).Neutralize to faint pink co

33、lor with dilute (0.1 M) alcoholicKOH solution.7.8 Alcoholic Potassium Hydroxide Standard Solution (0.5M)Prepare approximately 0.5 M solution by dissolving KOHin the alcohol specified in 7.3. Allow the solution to settle in adark place. Filter the solution, and allow to stand for 24 hbefore using.7.8

34、1 Alternatively prepare 0.5 or 0.1 M alcoholic KOH bymixing a commercially available KOH ampule (which is4Reagent Chemicals, American Chemical Society Specifications, AmericanChemical Society, Washington, DC. For Suggestions on the testing of reagents notlisted by the American Chemical Society, see

35、 Annual Standards for LaboratoryChemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeiaand National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville,MD.5Available from the U.S. Bureau of Alcohol, Tobacco, and Firearms, DistilledSpirits and Tobacco Branch, 1200 Pe

36、nnsylvania Avenue, NW, Washington, DC20226.D94 07 (2012)12carbonate free) with 95 % alcohol. Using this type solutiongives consistent blanks and does not give multiple breaks (seeNote 8).NOTE 8Because of the relatively large coefficient of cubic expansionof organic liquids such as 2-propanol (isopro

37、pyl alcohol), the standardalcoholic solution has to be standardized at temperatures close to thoseemployed in the titrations of samples.7.8.2 The KOH solutions shall be standardized by titratingwith standard potassium hydrogen phthalate solution (see 7.9and Note 8).7.9 Potassium Hydrogen Phthalate(C

38、8H5KO4) 0.1 MStandard Solution Weigh 2.0422 6 0.0002 g of potassiumhydrogen phthalate that has been dried at 110 6 5C to aconstant weight into a 100-mL volumetric flask. Dissolve inreagent water. Some heating may be necessary to dissolve thesolid. Dilute to 100 mL with distilled or deionized water,

39、afterthe solution has cooled.7.10 Stoddard Solvent, technical grade. (WarningExtremely flammable. Harmful if inhaled.)7.11 Xylene, reagent grade. (WarningExtremely flam-mable. Harmful if inhaled.)8. Blank Determinations8.1 Perform a blank determination concurrently with eachset (see Note 9) (one or

40、more) of samples as follows: measureaccurately from a buret or volumetric pipet (see Note 10) intothe Erlenmeyer flask 25 6 0.03 mL of alcoholic KOH solutionand 256 1 mL of butanone (methylethyl-ketone) or one of thealternative solvents. Connect the condenser to the flask, andheat for the same amoun

41、t of time as that used for the sampleafter refluxing begins. (WarningThe reflux condensershould be clamped securely to prevent it from tipping over ontothe hot plate with possible breakage of glassware. See alsoNote 11. ) Immediately add 50 mL of ASTM precipitationnaphtha (Warning See 7.6, also Note

42、 12 and Note 13)bycautiously pouring the naphtha down the condenser (discon-nect condenser if mushroom-type is used), and titrate the blankwhile hot, without reheating, with 0.5 M hydrochloric acid(HCl) using three drops of neutralized phenolphthalein indica-tor solution.NOTE 9Run blank determinatio

43、ns in duplicate on samples requiringthe highest accuracy. The precision data are based on duplicate blankdeterminations. A single blank is sufficient for routine work.NOTE 10If a volumetric pipet is used to measure the alcoholic KOHsolution, wait 30 s after delivery to allow for complete drainage.NO

44、TE 11Although standard procedure requires 30 min of reflux, somefats are readily saponified and complete saponification takes place within10 min. On the other hand, difficult saponifiable materials require morethan 2 h. Neither the shortened period nor the longer period should be usedexcept by mutua

45、l consent of the interested parties.NOTE 12Pouring 50 mL of naphtha down the condenser at the end ofthe saponification not only rinses the condenser but also cools the reactionmixture.NOTE 13In the case of insulating oils, the addition of ASTMprecipitation naphtha or petroleum spirit is not necessar

46、y.8.2 After the indicator color has been discharged, add,dropwise, more indicator solution. If this addition of indicatorrestores the color, continue the titration, making further drop-wise additions of indicator, if necessary, until the end point isreached (Note 14). The end point is reached when t

47、he indicatorcolor is completely discharged and does not immediatelyreappear upon further dropwise addition of the indicatorsolution. Record as V1in 11.1.NOTE 14Avoid emulsification of titration mixture, but ensure phasecontact by swirling the flask vigorously as the end point is approached.9. Sample

48、9.1 Using Practice D4057 (manual sampling) or PracticeD4177 (automatic sampling) as a guideline for obtaining arepresentative sample, make sure that the portion of the sampleto be tested appears homogenous. Choose the size of thesample so that the back-titration volume is from 40 to 80 % ofthe blank

49、 but do not exceed a 20-g sample weight (see Note15).NOTE 15The following sample sizes are suggested:Saponification Number Sample Size, g181 to 400 1111 to 180 271 to 110 331 to 70 516 to 30 100to15 2010. Procedure10.1 Weigh the specimen to the nearest 0.01 g (record as Win 11.1), such as by difference, from a small beaker into theErlenmeyer flask. Add 25 6 1 mL of butanone or one of thealternative solvents (WarningSee 4.1), followed by 25 60.03 mL of alcoholic KOH solution (WarningSee 7.3)measured accurately from a buret or vol

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1