ImageVerifierCode 换一换
格式:PDF , 页数:6 ,大小:117.64KB ,
资源ID:512899      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-512899.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D2457-2008 Standard Test Method for Specular Gloss of Plastic Films and Solid Plastics《塑料薄膜和固态塑料镜面光泽的标准试验方法》.pdf)为本站会员(syndromehi216)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D2457-2008 Standard Test Method for Specular Gloss of Plastic Films and Solid Plastics《塑料薄膜和固态塑料镜面光泽的标准试验方法》.pdf

1、Designation: D 2457 08Standard Test Method forSpecular Gloss of Plastic Films and Solid Plastics1This standard is issued under the fixed designation D 2457; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision.

2、 A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope*1.1 This test method describes procedures for the mea

3、sure-ment of gloss of plastic films and solid plastics, both opaqueand transparent. It contains four separate gloss angles (Note 1):1.1.1 60-deg, recommended for intermediate-gloss films,1.1.2 20-deg, recommended for high-gloss films,1.1.3 45-deg, recommended for intermediate and low-glossfilms, and

4、1.1.4 75-deg, recommended for plastic siding and soffit.NOTE 1The 75-deg, 60-deg, and 20-deg apparatus and method ofmeasurement duplicate those in Test Method D 523; those for the 45procedure are similarly taken from Test Method C 346.1.2 This standard does not purport to address all of thesafety co

5、ncerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.NOTE 2There is no similar or equivalent ISO standard.2. Referenced Documents2.1

6、ASTM Standards:2C 346 Test Method for 45-deg Specular Gloss of CeramicMaterialsD 523 Test Method for Specular GlossE 284 Terminology of AppearanceE 691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test MethodE 1347 Test Method for Color and Color-Difference Mea-sur

7、ement by Tristimulus ColorimetryE 1349 Test Method for Reflectance Factor and Color bySpectrophotometry Using Bidirectional (45:0 or 0:45)Geometry3. Terminology3.1 DefinitionsFor definitions of terms used in this testmethod, see Terminology E 284.4. Significance and Use4.1 Specular gloss is used pri

8、marily as a measure of theshiny appearance of films and surfaces. Precise comparisons ofgloss values are meaningful only when they refer to the samemeasurement procedure and same general type of material. Inparticular, gloss values for transparent films should not becompared with those for opaque fi

9、lms, and vice versa. Gloss isa complex attribute of a surface which cannot be completelymeasured by any single number.4.2 Specular gloss usually varies with surface smoothnessand flatness. It is sometimes used for comparative measure-ments of these surface properties.5. Apparatus5.1 Instrumental Com

10、ponentsEach apparatus (Note 3)shall consist of an incandescent light source furnishing anincident beam, means for locating the surface of the specimen,and a receptor located to receive the required pyramid of raysreflected by the specimen. The receptor shall be a photosensi-tive device responding to

11、 visible radiation.NOTE 3The 75-, 60-, and 20-deg procedures require apparatus iden-tical to that specified in Test Method D 523. The 45 procedure requiresapparatus like that specified in Test Method C 346.5.2 Geometric ConditionsThe axis of the incident beamshall be at one of the specified angles f

12、rom the perpendicular tothe specimen surface. The axis of the receptor shall be at themirror reflection of the axis of the incident beam. With a flatpiece of polished black glass or other front-surface mirror inspecimen position, an image of the source shall be formed atthe center of the receptor fi

13、eld stop (receptor window). Thelength of the illuminated area of the specimen shall be equal tonot more than one third of the distance from the center of thisarea to the receptor field stop. The angular dimensions andtolerances of the geometry of the source and receptor shall beas indicated in Table

14、 1. The angular dimensions of the receptorfield stop are measured from the center of the test surface. Theangular dimensions of the source field stop are mostly easily1This test method is under the jurisdiction of ASTM Committee D20 on Plasticsand is the direct responsibility of Subcommittee D20.40

15、on Optical Properties.Current edition approved March 1, 2008. Published March 2008. Originallyapproved in 1965. Last previous edition approved in 2003 as D2457 03.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book

16、 of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.measured by the s

17、pecimen-to-window angular size of themirror image of the source formed in the receptor field stop.(See Fig. 1 for a generalized illustration of the dimensions.)The tolerances are chosen so that errors of no more than onegloss unit at any point on the scale will result from errors in thesource and re

18、ceptor aperture.5.3 VignettingThere shall be no vignetting of rays that liewithin the field angles specified in 5.2.5.4 Spectral ConditionsResults should not differ signifi-cantly from those obtained with a source-filter-photocell com-bination that is spectrally corrected to yield CIE luminouseffici

19、ency with CIE Source C. Since specular reflection is, ingeneral, spectrally nonselective, spectral corrections need beapplied only to highly chromatic, low-gloss specimens uponagreement of users of this test method.5.5 Measurement MechanismThe receptor-measurementmechanism shall give a numerical ind

20、ication that is propor-tional to the light flux passing the receptor field stop within 61percent of full-scale reading.6. Reference Standards6.1 Primary Working Standards may be highly polished,plane, black glass surfaces. The specular reflectance, in per-cent, (Rs) of such surfaces shall be compute

21、d by the followingequation:Rspercent! 550FFcos i 2 =n22 sin2icos i 1 =n22 sin2iG21Fn2cos i 2 =n22 sin2in2cos i 1 =n22 sin2iG2G(1)where:i = the specular (incidence) angle, andn = the index of refraction of the surface.Multiply the computed Rsat each angle by the scale factorsshown in Table 2.NOTE 4On

22、 the 45 and 60 scales, a perfect mirror measures 1000.6.2 Secondary Working Standards of ceramic tile, glass,porcelain enamel, or other materials having hard, flat, anduniform surfaces may be calibrated from the primary standardon a glossmeter determined to be in strict conformance with therequireme

23、nts prescribed in 5.2.7. Preparation and Selection of Test Specimens7.1 This test method does not cover preparation techniques.Whenever a test for gloss requires the preparation of a testspecimen, report the technique of specimen preparation.7.2 Test results have been found to be seriously affected

24、bysurface warpage, waviness, or curvature. Ensure that specimensurfaces have good planarity. Perform tests with the directionsof machine marks, or similar texture effects, both parallel andperpendicular to the plane of the axes of the incident andreflected beams, unless otherwise specified. (Note th

25、at thisdoes not avoid the second-surface reflection.)7.3 Surface test areas shall be kept free of soil and abrasion.Gloss is due chiefly to reflection at the surface; therefore,anything that changes the surface physically or chemically islikely to affect gloss.8. Mounting Films for Measurement8.1 An

26、y nonrigid film must be mounted in a device that willhold it flat, but will not stretch the film while it is measured.Three different filmholding devices have each proved satisfac-tory for at least some types of films:8.1.1 Vacuum Plate (see Fig. 2) is required for stiff films.Connect the vacuum pla

27、te by rubber tube to a vacuum pump orvacuum line. With thin, soft films it is sometimes necessary touse a valve and pressure gage and to limit the vacuum so as tokeep from collapsing the soft film into the pores of the groundplate.8.1.2 Flat Plate with two-side pressure-sensitive tape (seeFig. 3). M

28、ake sure each specimen is pulled smooth, but notstretched before holding it by the two strips of adhesive tape.Replace the tape whenever it loses its adhesiveness.8.1.3 Telescoping Ring or Hoop (see Fig. 4)To mount thespecimen in the telescoping ring, lay the flexible film over thebase (male) sectio

29、n and drop the top over the base. Push downcarefully, taking care to pull the test film taut without stretchingit. Measure the taut area.8.2 Backing for Films That Transmit LightA matt blackbacking or (even better) a black cavity must be placed behindany film that transmits light. Erroneous measurem

30、ents willoccur without a suitable trap or backing.9. Procedure9.1 Operate the glossmeter in accordance with the manufac-turers instructions.9.2 Calibrate the instrument at the start and completion ofevery period of glossmeter operation and during the operationat sufficiently frequent intervals to as

31、sure that the instrumentresponse is practically constant. If at any time an instrumentfails to repeat readings of the standard to within 2 percent ofthe prior setting, the intervening results should be rejected. Tocalibrate, adjust the instrument to read correctly the gloss of ahighly polished stand

32、ard, and then read the gloss of a standardhaving poorer image-forming characteristics. If the instrumentreading for the second standard does not agree within 1 percentof its assigned value, do not use the instrument withoutreadjustment, preferably by the manufacturer.TABLE 1 Angular Dimensions and T

33、olerances of Geometry of Source and Receptor Field StopsSource Field Stop Receptor Field StopGeometry, deg Incidence Angle, degIn Plane of Measurement,degPerpendicular to Plane ofMeasurement, degIn Plane of Measurement, degPerpendicular to Plane ofMeasurement, deg75 75 6 0.1 3.0 max60 60 6 0.1 0.75

34、6 0.25 3.0 max 4.4 6 0.1 11.7 6 0.220 20 6 0.1 0.75 6 0.25 3.0 max 1.80 6 0.05 3.6 6 0.145 45 6 0.1 1.4 6 0.4 3.0 6 1.0 8.0 6 0.1 10.0 6 0.2D2457082NOTE 5Correct readings on black-glass and intermediate standards donot guarantee instrument conformity to specification requirements. Inaddition to meas

35、urements with gloss standards, dimensional checks forconformity to the geometric requirements of 4.2 should be made.9.3 Reduction of Amplification to Read over 100 GlossFilms on 0 to 100 Gloss ScaleA single smooth surface withrefractive index of 1.567 measures 100 on both the 60 and20-deg scales. Cl

36、ear plastic films have two specularly reflect-ing surfaces. Even though they are less than perfectly smoothand less than 1.567 in refractive index, adding the reflectionsfrom the two surfaces frequently leads to gloss values of morethan 100. If these gloss values are off-scale on the glossmeterused,

37、 recalibrate the instrument with the reading of the primarygloss standard set to a smaller value f (such as f = 50) andcorrect the gloss readings by multiplying them by (100/f).9.4 Position each specimen (mounted in a holder in the caseof films) in turn beneath (or on) the glossmeter. For specimensw

38、ith extrusion lines or other direction texture effects, orient themarks both parallel and perpendicular to the plane of the axesFIG. 1 Diagram of Glossmeter Showing Essential Components and DimensionsTABLE 2 Scale Factors for Gloss Standards, Perfect Mirror and Perfect Matt WhiteAGeometryScale Facto

39、rs (multiplyRsof black glassstandard by)Value for Black Glass whenn = 1.540Value for Perfect Mirror Value for Perfect Matt White60 10.0 95.8 1000 2.120 20.3 92.3 2030 1.445 10.0 55.9 1000 5.4AThe latter are useful for estimating corrections to gloss readings for reflection from sample backing (see N

40、ote 6).FIG. 2 Vacuum Plate Used to Hold Films FlatD2457083of the incident and reflected beams. Measure at least threeportions of the specimen surface in each direction to obtain anindication of uniformity. If no directionality is detected in thespecimen, then the test may be performed only in the pa

41、rallelor perpendicular orientation.NOTE 6In the case of films, it is often desirable to compare thesereadings with readings taken across the machine direction. Difference inthe readings will relate to the prominence of the machine marks.10. Report10.1 Report the following information:10.1.1 Type of

42、specimen, its gloss (mean of three readingsfor each direction or mean of both directions), nominalthickness, whether transparent, and the specimen holder em-ployed if specimen is a film.10.1.2 All individual gloss readings for a specimen shall bereported if any of the gloss readings differ by more t

43、han 10 %from the average for that specimen.10.1.3 Where preparation of the test specimen has beennecessary, description or identification of the method of prepa-ration,10.1.4 Identification of the glossmeter by the manufactur-ers name and model designation, and10.1.5 Identification of the working st

44、andard or standards ofgloss used.NOTE 7Diffuse CorrectionIt can be said that the light reflected bya specimen may be divided into one part reflected specularly in thedirection of mirror reflection (associated with gloss) and another partreflected diffusely in all directions (associated with lightnes

45、s on thewhite-gray-black scale). According to this picture, a gloss reading alwaysneeds to be diminished to compensate for that amount of the measuredlight attributable to diffuse reflectance. Although it is seldom possible inpractice to analyze reflected light according to this picture and say exac

46、tlywhat part is diffuse and what part is specular, it is nevertheless frequentpractice where gloss values of light and dark surfaces are being comparedto “correct” (diminish) specular gloss settings for diffuse reflectance. Ifdiffuse corrections are desired as additional information, measure 45-deg,

47、0-deg luminous directional reflectances of specimens in accordance withTest Methods E 1347 or E 1349. Multiply reflectance values in percentageby the following factors3for diffuse corrections in gloss units:60-deg 0.02120-deg 0.01345-deg 0.05511. Precision and Bias11.1 Table 3, Table 4 and Table 5 a

48、re based on a round robinconducted in 1987 and 1988 per Practice E 691 involvingseven test samples. The test results in Table 3 were from 13labs; Table 4 from seven labs and Table 5 from five labs. Foreach material, all samples were from a single roll of film or asingle injection molding run. Each l

49、ab obtained two test resultson separate days for each material.11.2 Table 6 is based on a round robin conducted in 2006 inaccordance with Practice E 691 involving four test samples.The test results in Table 6 were from six labs. Each sample wasan extruded piece of vinyl siding from a commercial extrusionline. Each lab measured the gloss three times per sample.NOTE 8Vinyl siding is designed to have a gloss of approximately20 % independent of the color surface design.11.3 WarningThe following explanations of Irand IR(11.4.1-11.4.3) are only intended to p

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1