ImageVerifierCode 换一换
格式:PDF , 页数:7 ,大小:99.06KB ,
资源ID:513240      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-513240.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D2650-2010 Standard Test Method for Chemical Composition of Gases By Mass Spectrometry《质谱法测定气体化学组成的标准试验方法》.pdf)为本站会员(visitstep340)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D2650-2010 Standard Test Method for Chemical Composition of Gases By Mass Spectrometry《质谱法测定气体化学组成的标准试验方法》.pdf

1、Designation: D2650 10Standard Test Method forChemical Composition of Gases by Mass Spectrometry1This standard is issued under the fixed designation D2650; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A

2、 number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method covers the quantitative analysis ofgases containing specific combinations of the following com-ponents: hydrogen; hy

3、drocarbons with up to six carbon atomsper molecule; carbon monoxide; carbon dioxide; mercaptanswith one or two carbon atoms per molecule; hydrogen sulfide;and air (nitrogen, oxygen, and argon). This test method cannotbe used for the determination of constituents present inamounts less than 0.1 mole

4、%. Dimethylbutanes are assumedabsent unless specifically sought.NOTE 1Although experimental procedures described herein are uni-form, calculation procedures vary with application. The following influ-ences guide the selection of a particular calculation: qualitative mixturecomposition; minimum error

5、 due to components presumed absent; mini-mum cross interference between known components; maximum sensitiv-ity to known components; low frequency and complexity of calibration;and type of computing machinery.Because of these influences, a tabulation of calculation proceduresrecommended for stated ap

6、plications is presented in Section 12 (Table 1).NOTE 2This test method was developed on Consolidated Electrody-namics Corporation Type 103 Mass Spectrometers. Users of otherinstruments may have to modify operating parameters and the calibrationprocedure.1.2 The values stated in SI units are to be re

7、garded asstandard. No other units of measurement are included in thisstandard.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and deter

8、mine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D1137 Method for Analysis of Natural Gases and RelatedTypes of Gaseous Mixtures by the Mass Spectrometer3D1247 Method of Sampling Manufactured Gas3D1265 Practice for Sampling Liquefied Petroleum

9、 (LP)Gases, Manual MethodD1302 Method forAnalysis of Carbureted Water Gas by theMass Spectrometer32.2 American Petroleum Institute Standards:4MPMS 14.1 Collecting and Handling of Natural GasSamples for Custody Transfer2.3 Gas Producers Association Standards:5GPA 2166 Obtaining Natural Gas Samples fo

10、r Analysis byGas Chromatography3. Terminology3.1 Definitions:3.1.1 base peak of a compoundthe peak used as 100 % incomputing the cracking pattern coefficient.3.1.2 cracked gaseshydrocarbon gases that contain unsat-urates.3.1.3 cracking pattern coeffcientthe ratio of a peak at anym/e relative to its

11、parent peak (or in some cases its base peak).3.1.4 GLCa gas-liquid chromatographic column that iscapable of separating the isomers of butenes, pentenes, hex-anes, and hexenes.3.1.5 IRinfrared equipment capable of analyzing gasesfor the butene isomers.3.1.6 mass number or m/e value of an ionthe quoti

12、ent ofthe mass of that ion (given in atomic mass units) and itspositive charge (number of electrons lost during ionization).3.1.7 parent peak of a compoundthe peak at which them/e is equal to the sum of the atomic mass values for thatcompound. This peak is sometimes used as 100 % in comput-ing the c

13、racking pattern coefficients.3.1.8 partial pressurethe pressure of any component inthe inlet system before opening the expansion bottle to leak.1This test method is under the jurisdiction of ASTM Committee D02 onPetroleum Products and Lubricants and is the direct responsibility of SubcommitteeD02.04

14、.0M on Mass Spectroscopy.Current edition approved May 1, 2010. Published July 2010. Originally approvedin 1967. Last previous edition approved in 2004 as D265004. DOI: 10.1520/D2650-10.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceast

15、m.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Withdrawn. The last approved version of this historical standard is referencedon www.astm.org.4Available from American Petroleum Institute (API), 1220 L. St., NW, Wash-ington,

16、 DC 20005-4070, http:/www.api.org.5Available from Gas Processors Association (GPA), 6526 E. 60th St., Tulsa, OK74145, www.gpaglobal.org.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-295

17、9, United States.TABLE 1 Calculation Procedures for Mass Spectrometer Gas AnalysisNOTECoding of calculation procedures is as follows:O = Order peaks are used in the calculation expressed serially from 1 to n, n being the total number of components.P=m/e of peak used and prefix, M, if monoisotopic.M

18、= Method of computationU = Unicomponent Peak MethodMa= Simultaneous equations where “a” identifies the particular set of equations if more than one is used.C = Chemically removed.Residual = m/e of peak suitable as an independent check on the method.SerialNo. 123456Name or ApplicationD1137ANatural Ga

19、sD1302BCarburetedWater GasH2-C6ReformerGasC3,C4iC4Component O P M O P M OCPCMOPMOCPCMOPMHydrogen . . . 6 2 M 16 2 U 17 2 M 0 . . . . .Methane 15 16 U 71516 M 15 16 U 16 16 M 0 . . . . .Ethylene 13 27 M2 12 27 M 13 26 U 15 26 M 0 . . . . .Ethane 12 30 M2 8 30 M 12 30 U 13 30 M 0 . . . . .Propene 10 4

20、2 M2 11 42 M 8 42 M2 12 42 M 6 42 M . . MPropane 9 29 M2 9 29 M 3 44 M1 14 29 M 9 29 M 3 29 MButadiene . . . 9 . . 3 . . 10 54 M 9 . M . . MButene-1 8 56 M2 5 56 U 9 41 M2 8 56 M 8 41 M . . MButene-2 8 56 M2 5 56 U 10 55 M2 8 56 M 4 56 M . . MIsobutene 8 56 M2 5 56 U 11 56 M2 8 56 M 5 39 M . . MIsob

21、utane 7 43 M2 5 . . 4 M43 M1 11 43 M 7 43 M 2 43 Mn-Butane 6 58 M2 4 58 U 5 58 M1 6 58 M 2 58 M 1 58 MPentenes . . . 3 70 U 2 70 U 9 55 M 3 70 M . . MIsopentane . . . 3 . . 6 M57 M1 7 57 M 1 72 M . . .n-Pentane 4 72 M2 2 72 U 7 72 M2 5 72 M . . . . . .Benzene . . . 2 . . 7 . . 4 78 M . . . . . .Hexa

22、nes . . . 2 . . 7 . . . . M . . . . . .C6cyclic paraffins . . . 2 . . 7 . . 3 84 M . . . . . .Hexanes 5 57 M2 2 . . 1 71 U 2 86 M . . . . . .Toluene . . . 2 . . 1 . . 1 92 M . . . . . .Hydrogen sulfide 2 34 M1 2 . . 1 . . 21 34 M . . . . . .Carbon dioxide 11 44 M2 10 44 M 1 . C 20 44 M . . . . . .Ca

23、rbon monoxide . . . 13 12 M 1 . C 18 28 M . . . . . .Nitrogen 14 28 M2 14 14 M 14 28 U 19 14 M . . . . . .Air 3 32 M1 1 32 U 14 . . 22 32 M 1 32 U . . .Helium 1 4 U 1 . . 14 . .DD. . . . . . .SerialNo. 7 8 9 10 11 12 13Name or ApplicationCommercialPropaneCommercialButaneBB Stream(CrackedButanes)Dry

24、GasCrackedFuel GasMixed Isoand NormalButanesReformerMake-UpGasUnstabi-lized FuelGasComponent O P M O P M OCPCMOPMOPMOPMOCPCMHydrogen . . . . . . . . . 15 2 M . . . 10 2 M 16 2 MMethane . . . . . . . . . 14 16 M . . . 9 16 M 15 16 MEthyleneE7 26 M . . . . . . 12 26 M . . . . . . 13 26 MEthane 6 30 M

25、. . . . . . 11 30 M . . . 7 30 M 12 30 MPropene 5 42 M 7 42 M 6 42 M 10 42 M . . . . . . 8 42 MPropane 3 44 M 4 44 M 4 44 M 7 44 M 3 44 M 5 44 M 6 44 MButadiene . . . . . . 1 54 M 3 54 M . . . . . . 2 54 MButene-1 1 56 M 1 56 M 7 41 M 1 . . . . . . . . 9 41 MButene-2 1 56 M 1 56 M 8 56 M 1 56 M . .

26、. . . . 10 56 MIsobutene 1FFM1FF939M 1F. 4 43 M . . . 11 39 MIsobutane 4 43 M 5 43 M 5 43 M 8 43 M 1 58 M 6 43 M 7 43 Mn-Butane 2 58 M 2 58 M 2 58 M 4 58 M . . . 2 58 M 3 58 MPentenes . . . 6 70 MG70 U 9 70 M . . . 3 57 M . 70 UIsopentane . . . 3 57 M 3 57 M 5 57 M 2 57 M 4 72 M 4 57 Mn-Pentane . .

27、. . . . . . . 6 72 M . . . . . . 5 72 MBenzene . . . . . . . . . . . . . . . . . .HHDHexanes . . . . . . . . . . . . . . . . . .HHDC6cyclic paraffins . . . . . . . . . . . . . . . . . .HHDHexanes . . . . . . . . . . . . . . . . . .HHDToluene . . . . . . . . . . . . . . . . . .HHDHydrogen sulfide . .

28、 . . . . . . .I. C . . .IICIICCarbon dioxide . . . . . . . . .I. C . . .IICIICCarbon monoxide . . . . . . . . . 13 28 M . . . 8 28 M 14 28 MNitrogen . . . . . . . . . . . . . . . . . . . . .Air . . . . . . . . . 2 32 M . . . 1 32 M 1 32 MD2650 1023.1.9 sensitivitythe height of any peak in the spectr

29、um ofthe pure compound divided by the pressure prevailing in theinlet system of the mass spectrometer immediately beforeopening the expansion bottle to leak.3.1.10 straight-run gaseshydrocarbon gases that do notcontain unsaturates.4. Summary of Test Method4.1 The molecular species which make up a ga

30、seous mix-ture are dissociated and ionized by electron bombardment. Thepositive ions of the different masses thus formed are acceler-ated in an electrostatic field and separated in a magnetic field.TABLE 1 ContinuedSerialNo. 7 8 9 10 11 12 13Name or ApplicationCommercialPropaneCommercialButaneBB Str

31、eam(CrackedButanes)Dry GasCrackedFuel GasMixed Isoand NormalButanesReformerMake-UpGasUnstabi-lized FuelGasAcid Gases . . . . . . . . .I. C . . .IICIICResidualE8 27 M 8 27 M 10 27 M 16 14 M 5 27 M 11 14 M 17 14 MResidualE9 29 M 9 29 M 11 29 M 17 15 M 6 29 M 12 15 M 18 15 MResidualE. . . . . . . . . 1

32、8 27 M . . . 13 27 M 19 27 MResidualE. . . . . . . . . 19 29 M . . . 14 29 M 20 29 MSerialNo. 14 15 16Name or Application H2-C6Cracked Gas H2-C6Straight Run Gas Light Refinery GasComponent O P M O P M O P MHydrogen 1 2 M 1 2 M 20 2 UMethane 2 16 M 2 16 M 17 16 MEthylene 4 26 M . . . 14 26 MEthane 7

33、30 M 5 30 M 13 30 MPropene 11 42 M . . . 12 42 MPropane 6 29 M 4 29 M 10 29 MButadiene 15 54 M . . . . . .Butane-1 . . . . . . 11 56 MButene-2 16 56 M . . . . . .Isobutene . . . . . . . . .Isobutane 12 43 M 9 43 M 9 43 Mn-Butane 18 58 M 14 58 M 8 58 MPentenes 21 70 M . . . 15 70 MIsopentane 17 57 M

34、13 57 M 7 57 Mn-Pentane 22 72 M 18 72 M 6 72 MBenzene . . . 19 78 M 5 78 UHexanes 23 84 M . . . 4 84 UC6cyclic paraffins . . . 20 84 M . . .Hexanes . . . 17 71 M 3 86 UToluene . . . 21 92 M . . .Hydrogen sulfide 9 34 M 7 34 M 1 34 UCarbon dioxide 13 44 M 10 44 M 16 44 UCarbon monoxide . . . . . . 18

35、 12 UNitrogen 5 28 M . . . 19 28 UAir 8 32 M 6 32 M 2 32 UWater 3 18 M 3 18 M . . .Cyclobutane . . . 12 56 M . . .Cyclopentene 20 67 M . . . . . .Pentadienes 20 67 M . . . . . .Cyclopentane . . . 16 70 M . . .Methylmercaptan 14 48 M 11 48 M . . .Ethylmercaptan 19 62 M 15 62 M . . .Residual 41 10 41

36、M 8 41 M . . .Residual 14 24 14 M 22 14 M . . .AMethod D1137.BMethod D1302.CThe mass spectrometer analysis for isomeric butenes is far less accurate than for the other hydrocarbon components. The inaccuracies involved in the isomeric buteneanalysis by mass spectrometer range from 1.0 to 4.0 mole %,

37、depending upon the concentration, ranges, and extent of drifts in instrument calibrations. These inaccuracieswill range still higher when pentenes are present in larger than 0.5 % concentrations. See Analytical Chemistry, Vol 22, 1950, p. 991; Ibid, Vol 21, 1949, p. 547; and Ibid,Vol 21, 1949, p. 57

38、2.DIn Method 4, butylenes and pentenes spectra are composites based on typical GLC analyses. Hexene and hexane spectra are from appropriately corrected spectraof representative fractions.EResiduals Groups A: m/e 72, 58, 57, 44, 43; Group B: m/e 56, 42, 30, 29, 14. All Group A residual shall be 0.2 d

39、ivision or less with the residual of the largest peakalso being less than 0.3 % of its total peak height. All Group B residuals shall be less than 1 % of the peak height or 0.2 division, whichever is greater.FButenes are grouped if they are less than 5 %.GIf pentenes exceed 1 %, they are determined

40、by other means and the spectrum removed from the poly spectrum.HRemoved from sample by distillation.IChemically removed.D2650 103The abundance of each mass present is recorded. The mixturespectrum obtained is resolved into individual constituents bymeans of simultaneous equations derived from the ma

41、ssspectra of the pure compounds.5. Significance and Use5.1 A knowledge of the composition of refinery gases isuseful in diagnosing the source of plant upsets, in determiningthe suitability of certain gas streams for use as fuel, or asfeedstocks for polymerization and alkylation, and for monitor-ing

42、the quality of commercial gases.6. Interferences6.1 In setting up an analysis, it is possible that a constituentwas ignored. Also, an impure calibration may have been used.The spectrum calculated from the composition found is to,therefore, be compared with the observed spectrum of themixture at mass

43、es independent of the original calculation.Differences so computed, called residuals, should as a generalrule be less than 1 % of the original mixture peak for anacceptable analysis. Masses suitable for this calculation aretabulated with each calculation procedure.NOTE 3Another strategy employed to

44、reduce interferences and in-crease accuracy consists of using spectra which have been corrected forcontributions caused by the rare isotopes of carbon and hydrogen.7. Apparatus7.1 Mass SpectrometerAny mass spectrometer can beused with this test method that shall be proven by performancetests describ

45、ed herein.8. Reference Standards8.1 The mass spectrometer must be calibrated with each ofthe components constituting the unknown mixture to beanalyzed. The calibrating compounds must be of high purity.Research grade calibrants are readily available from a numberof sources. In general, the mass spect

46、rometer is capable ofdetecting impurities in calibrants and the contribution of suchimpurities to the calibration spectrum can be removed.NOTE 4Some of the calculation procedures require the use of com-bined spectra, for example, air and butylenes. Three frequently usedpossibilities for producing co

47、mbined spectra are as follows:(1) Representative fraction from a specific source,(2) Multiplication factors to convert the spectrum of a pure constituentto a simulated spectrum of the mixture, and(3) Proportionality factors for combining actual calibrations.A recommended concentration limit for comb

48、ined mixtures is given. Atthe level recommended, the residual spectrum contribute less than 0.1 %error in any one result when the concentration of any constituent in thecombined mixture is doubled.9. Sampling9.1 Samples shall be collected by methods known to pro-vide a representative mixture of the

49、material to be analyzed.Samples can be collected in accordance with Test MethodD1247, Practice D1265, API MPMS 14.1,orGPA 2166.10. Calibration and Standardization10.1 ApparatusDetermine whether operating conditionsremain normal by making certain tests periodically, followinginstructions furnished by the manufacturer of the apparatus.Include in these tests rate of leak, ion-beam control settings,pattern reproducibility, and galvanometer calibrations.10.1.1 To ascertain pattern stability, the following scheduleis provided both for laboratories that have mass spect

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1