ImageVerifierCode 换一换
格式:PDF , 页数:42 ,大小:562.80KB ,
资源ID:513341      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-513341.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D2699-2008 Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel.pdf)为本站会员(confusegate185)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D2699-2008 Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel.pdf

1、Designation: D 2699 08Designation: 237/87An American National StandardStandard Test Method forResearch Octane Number of Spark-Ignition Engine Fuel1This standard is issued under the fixed designation D 2699; the number immediately following the designation indicates the year oforiginal adoption or, i

2、n the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope*1.1

3、This laboratory test method covers the quantitativedetermination of the knock rating of liquid spark-ignitionengine fuel in terms of Research O.N., except that this testmethod may not be applicable to fuel and fuel components thatare primarily oxygenates.2The sample fuel is tested using astandardize

4、d single cylinder, four-stroke cycle, variable com-pression ratio, carbureted, CFR engine run in accordance witha defined set of operating conditions. The O.N. scale is definedby the volumetric composition of PRF blends. The sample fuelknock intensity is compared to that of one or more PRF blends.Th

5、e O.N. of the PRF blend that matches the K.I. of the samplefuel establishes the Research O.N.1.2 The O.N. scale covers the range from 0 to 120 octanenumber but this test method has a working range from 40 to120 Research O.N. Typical commercial fuels produced forspark-ignition engines rate in the 88

6、to 101 Research O.N.range. Testing of gasoline blend stocks or other process streammaterials can produce ratings at various levels throughout theResearch O.N. range.1.3 The values of operating conditions are stated in SI unitsand are considered standard. The values in parentheses are thehistorical i

7、nch-pound units. The standardized CFR enginemeasurements continue to be in inch-pound units only becauseof the extensive and expensive tooling that has been created forthis equipment.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is there

8、sponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For specific hazardstatements, see Section 8, 13.4.1, 14.5.1, 15.6.1, Annex A1,A2.2.3.1, A2.2.3.3 (6) and (9), A2.3.5, X3.3.7, X4.2

9、.3.1,X4.3.4.1, X4.3.9.3, X4.3.11.4, and X4.5.1.8.2. Referenced Documents2.1 ASTM Standards:3D 1193 Specification for Reagent WaterD 2268 Test Method for Analysis of High-Purity n-Heptaneand Isooctane by Capillary Gas ChromatographyD 2360 Test Method for Trace Impurities in MonocyclicAromatic Hydroca

10、rbons by Gas ChromatographyD 2700 Test Method for Motor Octane Number of Spark-Ignition Engine FuelD 2885 Test Method for Determination of Octane Numberof Spark-Ignition Engine Fuels by On-Line Direct Com-parison TechniqueD 3703 Test Method for Hydroperoxide Number of Avia-tion Turbine Fuels, Gasoli

11、ne and Diesel FuelsD 4057 Practice for Manual Sampling of Petroleum andPetroleum ProductsD 4175 Terminology Relating to Petroleum, PetroleumProducts, and LubricantsD 4177 Practice for Automatic Sampling of Petroleum andPetroleum ProductsD 4814 Specification forAutomotive Spark-Ignition EngineFuelD 5

12、842 Practice for Sampling and Handling of Fuels forVolatility MeasurementD 6304 Test Method for Determination of Water in Petro-leum Products, Lubricating Oils, and Additives by Coulo-metric Karl Fischer TitrationE 344 Terminology Relating to Thermometry and Hydrom-etryE 456 Terminology Relating to

13、Quality and Statistics1This test method is under the jurisdiction of ASTM Committee D02 onPetroleum Products and Lubricants and is the direct responsibility of SubcommitteeD02.01 on Combustion Characteristics.Current edition approved May 1, 2008. Published June 2008. Originallyapproved in 1968. Last

14、 previous edition approved in 2007 as D 269907a.2Motor O.N., determined using Test Method D 2700, is a companion method toprovide a similar but typically lower octane rating under more severe operatingconditions.3For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Cus

15、tomer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocke

16、n, PA 19428-2959, United States.E 542 Practice for Calibration of Laboratory VolumetricApparatus2.2 ANSI Standard:4C-39.1 Requirements for Electrical Analog Indicating In-struments2.3 Energy Institute Standard:5IP 224/02 Determination of Low Lead Content of LightPetroleum Distillates by Dithizone Ex

17、traction and Colo-rimetric Method3. Terminology3.1 Definitions:3.1.1 accepted reference value, na value that serves as anagreed-upon reference for comparison, and which is derivedas: (1) a theoretical or established value, based on scientificprinciples, (2) an assigned or certified value, based on e

18、xperi-mental work of some national or international organization, or(3) a consensus or certified value, based on collaborativeexperimental work under the auspices of a scientific orengineering group. E 4563.1.1.1 DiscussionIn the context of this test method,accepted reference value is understood to

19、apply to the Researchoctane number of specific reference materials determinedempirically under reproducibility conditions by the NationalExchange Group or another recognized exchange testing orga-nization.3.1.2 Check Fuel, nfor quality control testing, a spark-ignition engine fuels of selected chara

20、cteristics having anoctane number accepted reference value (O.N.ARV) determinedby round-robin testing under reproducibility conditions.3.1.3 cylinder height, nfor the CFR engine, the relativevertical position of the engine cylinder with respect to thepiston at top dead center (tdc) or the top machin

21、ed surface ofthe crankcase.3.1.3.1 dial indicator reading, nfor the CFR engine,anumerical indication of cylinder height, in thousandths of aninch, indexed to a basic setting at a prescribed compressionpressure when the engine is motored.3.1.3.2 digital counter reading, nfor the CFR engine,anumerical

22、 indication of cylinder height, indexed to a basicsetting at a prescribed compression pressure when the engine ismotored.3.1.4 detonation meter, nfor knock testing, the signalconditioning instrumentation that accepts the electrical signalfrom the detonation pickup and provides an output signal fordi

23、splay.3.1.5 detonation pickup, nfor knock testing,amagnetostrictive-type transducer that threads into the enginecylinder and is exposed to combustion chamber pressure toprovide an electrical signal that is proportional to the rate-of-change of cylinder pressure.3.1.6 dynamic fuel level, nfor knock t

24、esting, test proce-dure in which the fuel-air ratio for maximum knock intensityfor sample and reference fuels is determined using the fallinglevel technique that changes carburetor fuel level from a highor rich mixture condition to a low or lean mixture condition, ata constant rate, causing knock in

25、tensity to rise to a maximumand then decrease, thus permitting observation of the maxi-mum knockmeter reading.3.1.7 equilibrium fuel level, nfor knock testing, test pro-cedure in which the fuel-air ratio for maximum knock intensityfor sample and reference fuels is determined by makingincremental ste

26、p changes in fuel-air ratio, observing the equi-librium knock intensity for each step, and selecting the levelthat produces the highest knock intensity reading.3.1.8 firing, nfor the CFR engine, operation of the CFRengine with fuel and ignition.3.1.9 fuel-air ratio for maximum knock intensity, nfork

27、nock testing, that proportion of fuel to air that produces thehighest knock intensity for each fuel in the knock testing unit,provided this occurs within specified carburetor fuel levellimits.3.1.10 guide tables, nfor knock testing, the specific rela-tionship between cylinder height (compression rat

28、io) andoctane number at standard knock intensity for specific primaryreference fuel blends tested at standard or other specifiedbarometric pressure.3.1.11 knock, nin a spark-ignition engine, abnormal com-bustion, often producing audible sound, caused by autoignitionof the air/fuel mixture. D 41753.1

29、.12 knock intensity, nfor knock testing, a measure ofthe level of knock.3.1.13 knockmeter, nfor knock testing,the0to100division indicating meter that displays the knock intensitysignal from the detonation meter.3.1.14 motoring, nfor the CFR engine, operation of theCFR engine without fuel and with th

30、e ignition shut off.3.1.15 octane number, nfor spark-ignition engine fuel,any one of several numerical indicators of resistance to knockobtained by comparison with reference fuels in standardizedengine or vehicle tests. D 41753.1.15.1 research octane number, nfor spark-ignition en-gine fuel, the num

31、erical rating of knock resistance obtained bycomparison of its knock intensity with that of primary refer-ence fuel blends when both are tested in a standardized CFRengine operating under the conditions specified in this testmethod.3.1.16 oxygenate, nan oxygen-containing organic com-pound, which may

32、 be used as a fuel or fuel supplement, forexample, various alcohols and ethers. D 41753.1.17 primary reference fuels, nfor knock testing, isooc-tane, n-heptane, volumetrically proportioned mixtures of isooc-tane with n-heptane, or blends of tetraethyllead in isooctanethat define the octane number sc

33、ale.3.1.17.1 primary reference fuel blends below 100 octane,nthe volume % of isooctane in a blend with n-heptane thatdefines the octane number of the blend, isooctane beingassigned as 100 and n-heptane as 0 octane number.3.1.17.2 primary reference fuel blends above 100 octane,nthe millilitres per U.

34、S. gallon of tetraethyllead in isooctane4Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor, New York, NY 10036.5Available from Energy Institute, 61 New Cavendish St., London, WIG 7AR,U.K.D2699082that define octane numbers above 100 in accordance with anempirically

35、 determined relationship.3.1.18 repeatability conditions, nconditions where inde-pendent test results are obtained with the same method onidentical test items in the same laboratory by the same operatorusing the same equipment within short intervals of time.E 4563.1.18.1 DiscussionIn the context of

36、this test method, ashort time interval between two ratings on a sample fuel isunderstood to be not less than the time to obtain at least onerating on another sample fuel between them but not so long asto permit any significant change in the sample fuel, testequipment, or environment.3.1.19 reproduci

37、bility conditions, nconditions where testresults are obtained with the same method on identical testitems in different laboratories with different operators usingdifferent equipment. E 4563.1.20 spread, nin knock measurement, the sensitivity ofthe detonation meter expressed in knockmeter divisions p

38、eroctane number.3.1.21 standard knock intensity, nfor knock testing, thatlevel of knock established when a primary reference fuel blendof specific octane number is used in the knock testing unit atmaximum knock intensity fuel-air ratio, with the cylinderheight (dial indicator or digital counter read

39、ing) set to theprescribed guide table value. The detonation meter is adjustedto produce a knockmeter reading of 50 for these conditions.3.1.22 toluene standardization fuels, nfor knock testing,those volumetrically proportioned blends of two or more of thefollowing: reference fuel grade toluene, n-he

40、ptane, and isooc-tane that have prescribed rating tolerances for O.N.ARVdeter-mined by round-robin testing under reproducibility conditions.3.2 Abbreviations:3.2.1 ARV = accepted reference value3.2.2 CFR = Cooperative Fuel Research3.2.3 C.R. = compression ratio3.2.4 IAT = intake air temperature3.2.5

41、 K.I. = knock intensity3.2.6 OA = Octane Analyzer3.2.7 O.N. = octane number3.2.8 PRF = primary reference fuel3.2.9 RTD = resistance thermometer device (E 344) plati-num type3.2.10 TSF = toluene standardization fuel4. Summary of Test Method4.1 The Research O.N. of a spark-ignition engine fuel isdeter

42、mined using a standard test engine and operating condi-tions to compare its knock characteristic with those of PRFblends of known O.N. Compression ratio and fuel-air ratio areadjusted to produce standard K.I. for the sample fuel, asmeasured by a specific electronic detonation meter instrumentsystem.

43、 A standard K.I. guide table relates engine C.R. to O.N.level for this specific method. The fuel-air ratio for the samplefuel and each of the primary reference fuel blends is adjustedto maximize K.I. for each fuel.4.1.1 The fuel-air ratio for maximum K.I. may be obtained(1) by making incremental ste

44、p changes in mixture strength,observing the equilibrium K.I. value for each step, and thenselecting the condition that maximizes the reading or (2)bypicking the maximum K.I. as the mixture strength is changedfrom either rich-to-lean or lean-to-rich at a constant rate.4.2 Bracketing ProceduresThe eng

45、ine is calibrated tooperate at standard K.I. in accordance with the guide table. Thefuel-air ratio of the sample fuel is adjusted to maximize theK.I., and then the cylinder height is adjusted so that standardK.I. is achieved. Without changing cylinder height, two PRFblends are selected such that, at

46、 their fuel-air ratio for maxi-mum K.I., one knocks harder (higher K.I.) and the other softer(lower K.I.) than the sample fuel. A second set of K.I.measurements for sample fuel and PRF blends is required, andthe sample fuel octane number is calculated by interpolation inproportion to the differences

47、 in average K.I. readings. A finalcondition requires that the cylinder height used shall be withinprescribed limits around the guide table value for the calculatedO.N. Bracketing procedure ratings may be determined usingeither the equilibrium or dynamic fuel-air ratio approach.4.3 C.R. ProcedureA ca

48、libration is performed to establishstandard K.I. using the cylinder height specified by the guidetable for the O.N. of the selected PRF. The fuel-air ratio of thesample fuel is adjusted to maximize the K.I. under equilibriumconditions; the cylinder height is adjusted so that standard K.I.is achieved

49、. The calibration is reconfirmed and the sample fuelrating is repeated to establish the proper conditions a secondtime. The average cylinder height reading for the sample fuel,compensated for barometric pressure, is converted directly toO.N., using the guide table. A final condition for the ratingrequires that the sample fuel O.N. be within prescribed limitsaround that of the O.N. of the single PRF blend used tocalibrate the engine to the guide table standard K.I. condition.5. Significance and Use5.1 Research O.N. correlates with commercial automotivespa

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1