ImageVerifierCode 换一换
格式:PDF , 页数:57 ,大小:1.10MB ,
资源ID:513348      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-513348.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D2699-2012a Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel《研究火花点火发动机燃料的辛烷值的标准试验方法》.pdf)为本站会员(appealoxygen216)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D2699-2012a Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel《研究火花点火发动机燃料的辛烷值的标准试验方法》.pdf

1、Designation: D2699 12D2699 12aDesignation: 237/87Standard Test Method forResearch Octane Number of Spark-Ignition Engine Fuel1This standard is issued under the fixed designation D2699; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision

2、, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope*1.1 This laboratory test m

3、ethod covers the quantitative determination of the knock rating of liquid spark-ignition engine fuelin terms of Research O.N., except that including fuels that contain up to 25 % v/v of ethanol. However, this test method may notbe applicable to fuel and fuel components that are primarily oxygenates.

4、2 The sample fuel is tested using a standardized singlecylinder, four-stroke cycle, variable compression ratio, carbureted, CFR engine run in accordance with a defined set of operatingconditions. The O.N. scale is defined by the volumetric composition of PRF blends. The sample fuel knock intensity i

5、s comparedto that of one or more PRF blends. The O.N. of the PRF blend that matches the K.I. of the sample fuel establishes the ResearchO.N.1.2 The O.N. scale covers the range from 0 to 120 octane number but this test method has a working range from 40 to 120Research O.N. Typical commercial fuels pr

6、oduced for spark-ignition engines rate in the 88 to 101 Research O.N. range. Testingof gasoline blend stocks or other process stream materials can produce ratings at various levels throughout the Research O.N.range.1.3 The values of operating conditions are stated in SI units and are considered stan

7、dard. The values in parentheses are thehistorical inch-pound units. The standardized CFR engine measurements continue to be in inch-pound units only because of theextensive and expensive tooling that has been created for this equipment.1.4 WARNINGMercury has been designated by many regulatory agenci

8、es as a hazardous material that can cause centralnervous system, kidney and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Cautionshould be taken when handling mercury and mercury containing products. See the applicable product Material Safety Data Sheet(

9、MSDS) for details and EPAs websitehttp:/www.epa.gov/mercury/faq.htmfor additional information. Users should be awarethat selling mercury and/or mercury containing products into your state or country may be prohibited by law.1.4 This standard does not purport to address all of the safety concerns, if

10、 any, associated with its use. It is the responsibilityof the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatorylimitations prior to use. For specific warning statements, see Section 8, 13.4.1, 14.5.1, 15.6.1, Annex A1, A2.2.3.1,

11、A2.2.3.3 (6)and (9), A2.3.5, X3.3.7, X4.2.3.1, X4.3.4.1, X4.3.9.3, X4.3.11.4, and X4.5.1.8.2. Referenced Documents2.1 ASTM Standards:3D1193 Specification for Reagent WaterD2268 Test Method for Analysis of High-Purity n-Heptane and Isooctane by Capillary Gas ChromatographyD2360 Test Method for Trace

12、Impurities in Monocyclic Aromatic Hydrocarbons by Gas ChromatographyD2700 Test Method for Motor Octane Number of Spark-Ignition Engine FuelD2885 Test Method for Determination of Octane Number of Spark-Ignition Engine Fuels by On-Line Direct ComparisonTechnique1 This test method is under the jurisdic

13、tion of ASTM Committee D02 on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.01 onCombustion Characteristics.Current edition approved April 1, 2012Dec. 1, 2012. Published July 2012May 2013. Originally approved in 1968. Last previous edition approved in 2011201

14、2 asD26991112.1 . DOI: 10.1520/D2699-12.10.1520/D2699-12A.2 Motor O.N., determined using Test Method D2700, is a companion method to provide a similar but typically lower octane rating under more severe operating conditions.3 For referencedASTM standards, visit theASTM website, www.astm.org, or cont

15、actASTM Customer Service at serviceastm.org. For Annual Book of ASTM Standardsvolume information, refer to the standards Document Summary page on the ASTM website.This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have bee

16、n made to the previous version. Becauseit may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current versionof the standard as published by ASTM is to be considered the official document

17、.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1D3703 Test Method for Hydroperoxide Number of Aviation Turbine Fuels, Gasoline and Diesel FuelsD4057 Practice for Manual

18、 Sampling of Petroleum and Petroleum ProductsD4175 Terminology Relating to Petroleum, Petroleum Products, and LubricantsD4177 Practice for Automatic Sampling of Petroleum and Petroleum ProductsD4814 Specification for Automotive Spark-Ignition Engine FuelD5842 Practice for Sampling and Handling of Fu

19、els for Volatility MeasurementD6304 Test Method for Determination of Water in Petroleum Products, Lubricating Oils, and Additives by Coulometric KarlFischer TitrationE1 Specification for ASTM Liquid-in-Glass ThermometersE344 Terminology Relating to Thermometry and HydrometryE456 Terminology Relating

20、 to Quality and StatisticsE542 Practice for Calibration of Laboratory Volumetric ApparatusE1064 Test Method for Water in Organic Liquids by Coulometric Karl Fischer Titration2.2 ANSI Standard:4C-39.1 Requirements for Electrical Analog Indicating Instruments2.3 Energy Institute Standard:5IP 224/02 De

21、termination of Low Lead Content of Light Petroleum Distillates by Dithizone Extraction and Colorimetric Method3. Terminology3.1 Definitions:3.1.1 accepted reference value, na value that serves as an agreed-upon reference for comparison, and which is derived as: (1)a theoretical or established value,

22、 based on scientific principles, (2) an assigned or certified value, based on experimental work ofsome national or international organization, or (3) a consensus or certified value, based on collaborative experimental work underthe auspices of a scientific or engineering group. E4563.1.1.1 Discussio

23、nIn the context of this test method, accepted reference value is understood to apply to the Research octane number of specificreference materials determined empirically under reproducibility conditions by the National Exchange Group or anotherrecognized exchange testing organization.3.1.2 Check Fuel

24、, nfor quality control testing, a spark-ignition engine fuels of selected characteristics having an octanenumber accepted reference value (O.N.ARV) determined by round-robin testing under reproducibility conditions.3.1.3 cylinder height, nfor the CFR engine, the relative vertical position of the eng

25、ine cylinder with respect to the piston attop dead center (tdc) or the top machined surface of the crankcase.3.1.3.1 dial indicator reading, nfor the CFR engine, a numerical indication of cylinder height, in thousandths of an inch,indexed to a basic setting at a prescribed compression pressure when

26、the engine is motored.3.1.3.2 digital counter reading, nfor the CFR engine, a numerical indication of cylinder height, indexed to a basic setting ata prescribed compression pressure when the engine is motored.3.1.4 detonation meter, analog, nfor knock testing, the analog signal conditioning instrume

27、ntation that accepts the electricalsignal from the detonation pickup and provides an output signal for display.3.1.5 detonation meter, digital, nfor knock testing, the digital signal conditioning instrumentation that accepts the electricalsignal from the detonation pickup and provides a digital outp

28、ut for display.3.1.6 detonation pickup, nfor knock testing, a magnetostrictive-type transducer that threads into the engine cylinder and isexposed to combustion chamber pressure to provide an electrical signal that is proportional to the rate-of-change of cylinderpressure.3.1.7 dynamic fuel level, n

29、for knock testing, test procedure in which the fuel-air ratio for maximum knock intensity for sampleand reference fuels is determined using the falling level technique that changes carburetor fuel level from a high or rich mixturecondition to a low or lean mixture condition, at a constant rate, caus

30、ing knock intensity to rise to a maximum and then decrease,thus permitting observation of the maximum knockmeter reading.3.1.8 equilibrium fuel level, nfor knock testing, test procedure in which the fuel-air ratio for maximum knock intensity forsample and reference fuels is determined by making incr

31、emental step changes in fuel-air ratio, observing the equilibrium knockintensity for each step, and selecting the level that produces the highest knock intensity reading.3.1.9 firing, nfor the CFR engine, operation of the CFR engine with fuel and ignition.4 Available from American National Standards

32、 Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036.5 Available from Energy Institute, 61 New Cavendish St., London, WIG 7AR, U.K.D2699 12a23.1.10 fuel-air ratio for maximum knock intensity, nfor knock testing, that proportion of fuel to air that produces the highestknock intensity for

33、each fuel in the knock testing unit, provided this occurs within specified carburetor fuel level limits.3.1.11 guide tables, n for knock testing, the specific relationship between cylinder height (compression ratio) and octanenumber at standard knock intensity for specific primary reference fuel ble

34、nds tested at standard or other specified barometricpressure.3.1.12 knock, nin a spark-ignition engine, abnormal combustion, often producing audible sound, caused by autoignition ofthe air/fuel mixture. D41753.1.13 knock intensity, nfor knock testing, a measure of the level of knock.3.1.14 knockmete

35、r, analog, nfor knock testing, the 0 to 100 division analog indicating meter that displays the knock intensitysignal from the analog detonation meter.3.1.15 knockmeter, digital, nfor knock testing, the 0 to 999 division digital indicating meter that displays the knock intensityfrom the digital deton

36、ation meter.3.1.16 motoring, nfor the CFR engine, operation of the CFR engine without fuel and with the ignition shut off.3.1.17 octane number, nfor spark-ignition engine fuel, any one of several numerical indicators of resistance to knock obtainedby comparison with reference fuels in standardized e

37、ngine or vehicle tests. D41753.1.17.1 research octane number, nfor spark-ignition engine fuel, the numerical rating of knock resistance obtained bycomparison of its knock intensity with that of primary reference fuel blends when both are tested in a standardized CFR engineoperating under the conditi

38、ons specified in this test method.3.1.18 oxygenate, nan oxygen-containing organic compound, which may be used as a fuel or fuel supplement, for example,various alcohols and ethers. D41753.1.19 primary reference fuels, nfor knock testing, isooctane, n-heptane, volumetrically proportioned mixtures of

39、isooctanewith n-heptane, or blends of tetraethyllead in isooctane that define the octane number scale.3.1.19.1 primary reference fuel blends below 100 octane, nthe volume % of isooctane in a blend with n-heptane that definesthe octane number of the blend, isooctane being assigned as 100 and n-heptan

40、e as 0 octane number.3.1.19.2 primary reference fuel blends above 100 octane, nthe millilitres per U.S. gallon of tetraethyllead in isooctane thatdefine octane numbers above 100 in accordance with an empirically determined relationship.3.1.20 repeatability conditions, nconditions where independent t

41、est results are obtained with the same method on identical testitems in the same laboratory by the same operator using the same equipment within short intervals of time. E4563.1.20.1 DiscussionIn the context of this test method, a short time interval between two ratings on a sample fuel is understoo

42、d to be not less than thetime to obtain at least one rating on another sample fuel between them but not so long as to permit any significant change in thesample fuel, test equipment, or environment.3.1.21 reproducibility conditions, nconditions where test results are obtained with the same method on

43、 identical test items indifferent laboratories with different operators using different equipment. E4563.1.22 spread, nin knock measurement, the sensitivity of the analog detonation meter expressed in knockmeter divisions peroctane number. (This feature is not a necessary adjustment in the digital d

44、etonation meter.)3.1.23 standard knock intensity, analog, nfor knock testing, that level of knock established when a primary reference fuelblend of specific octane number is used in the knock testing unit at maximum knock intensity fuel-air ratio, with the cylinder height(dial indicator or digital c

45、ounter reading) set to the prescribed guide table value.The analog detonation meter is adjusted to producean analog knockmeter reading of 50 for these conditions.3.1.24 standard knock intensity, digital, nfor knock testing, that level of knock established when a primary reference fuelblend of specif

46、ic octane number is used in the knock testing unit at maximum knock intensity fuel-air ratio, with the cylinder height(dial indicator or digital counter reading) set to the prescribed guide table value. The digital detonation meter will typically displaya peak to peak voltage of approximately 0.15 V

47、 for these conditions.3.1.25 toluene standardization fuels, nfor knock testing, those volumetrically proportioned blends of two or more of thefollowing: reference fuel grade toluene, n-heptane, and isooctane that have prescribed rating tolerances for O.N.ARV determinedby round-robin testing under re

48、producibility conditions.3.2 Abbreviations:3.2.1 ARV = accepted reference value3.2.2 CFR = Cooperative Fuel Research3.2.3 C.R. = compression ratio3.2.4 IAT = intake air temperatureD2699 12a33.2.5 K.I. = knock intensity3.2.6 OA = Octane Analyzer3.2.7 O.N. = octane number3.2.8 PRF = primary reference

49、fuel3.2.9 RTD = resistance thermometer device (E344) platinum type3.2.10 TSF = toluene standardization fuel4. Summary of Test Method4.1 The Research O.N. of a spark-ignition engine fuel is determined using a standard test engine and operating conditions tocompare its knock characteristic with those of PRF blends of known O.N. Compression ratio and fuel-air ratio are adjusted toproduce standard K.I. for the sample fuel, as measured by a specific electronic detonation measurement system. A standard K.I.guide table relates engine C.R. to O.N. l

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1