ImageVerifierCode 换一换
格式:PDF , 页数:71 ,大小:1.44MB ,
资源ID:513374      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-513374.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D2700-2017a Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel《火花点火发动机燃料的电动机辛烷值的标准试验方法》.pdf)为本站会员(twoload295)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D2700-2017a Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel《火花点火发动机燃料的电动机辛烷值的标准试验方法》.pdf

1、Designation: D2700 17D2700 17aDesignation: 236/87Standard Test Method forMotor Octane Number of Spark-Ignition Engine Fuel1This standard is issued under the fixed designation D2700; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, t

2、he year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S. Department of Defense.1. Scope*1.1 This laboratory test

3、 method covers the quantitative determination of the knock rating of liquid spark-ignition engine fuelin terms of Motor octane number, including fuels that contain up to 25 % v/v of ethanol. However, this test method may not beapplicable to fuel and fuel components that are primarily oxygenates.2 Th

4、e sample fuel is tested in a standardized single cylinder,four-stroke cycle, variable compression ratio, carbureted, CFR engine run in accordance with a defined set of operating conditions.The octane number scale is defined by the volumetric composition of primary reference fuel blends. The sample f

5、uel knockintensity is compared to that of one or more primary reference fuel blends. The octane number of the primary reference fuel blendthat matches the knock intensity of the sample fuel establishes the Motor octane number.1.2 The octane number scale covers the range from 0 to 120 octane number,

6、but this test method has a working range from 40to 120 octane number. Typical commercial fuels produced for automotive spark-ignition engines rate in the 80 to 90 Motor octanenumber range. Typical commercial fuels produced for aviation spark-ignition engines rate in the 98 to 102 Motor octane number

7、range.Testing of gasoline blend stocks or other process stream materials can produce ratings at various levels throughout the Motoroctane number range.1.3 The values of operating conditions are stated in SI units and are considered standard. The values in parentheses are thehistorical inch-pounds un

8、its. The standardized CFR engine measurements continue to be in inch-pound units only because of theextensive and expensive tooling that has been created for this equipment.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibi

9、lityof the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability ofregulatory limitations prior to use. For more specific hazard statements, see Section 8, 14.4.1, 15.5.1, 16.6.1, AnnexA1, A2.2.3.1,A2.2.3.3(6) and (9), A2.3.5, X3.3

10、.7, X4.2.3.1, X4.3.4.1, X4.3.9.3, X4.3.12.4, and X4.5.1.8.1.5 This international standard was developed in accordance with internationally recognized principles on standardizationestablished in the Decision on Principles for the Development of International Standards, Guides and Recommendations issu

11、edby the World Trade Organization Technical Barriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:3D1193 Specification for Reagent WaterD2268 Test Method for Analysis of High-Purity n-Heptane and Isooctane by Capillary Gas ChromatographyD2360 Test Method for Trace Impurities in

12、 Monocyclic Aromatic Hydrocarbons by Gas Chromatography (Withdrawn 2016)4D2699 Test Method for Research Octane Number of Spark-Ignition Engine FuelD2885 Test Method for Determination of Octane Number of Spark-Ignition Engine Fuels by On-Line Direct ComparisonTechnique1 This test method is under the

13、jurisdiction ofASTM Committee D02 on Petroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility of SubcommitteeD02.01 on Combustion Characteristics.Current edition approved Oct. 1, 2017Dec. 15, 2017. Published November 2017February 2018. Originally approved in 1968. Last previ

14、ous edition approved in 20162017as D2700 16a.D2700 17. DOI: 10.1520/D2700-17.10.1520/D2700-17A.2 Research octane number, determined using Test Method D2699, is a companion method to provide a similar but typically higher octane rating under milder operatingconditions.3 For referencedASTM standards,

15、visit theASTM website, www.astm.org, or contactASTM Customer Service at serviceastm.org. For Annual Book of ASTM Standardsvolume information, refer to the standards Document Summary page on the ASTM website.4 The last approved version of this historical standard is referenced on www.astm.org.This do

16、cument is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Becauseit may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions a

17、s appropriate. In all cases only the current versionof the standard as published by ASTM is to be considered the official document.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. Unit

18、ed States1D3703 Test Method for Hydroperoxide Number of Aviation Turbine Fuels, Gasoline and Diesel FuelsD4057 Practice for Manual Sampling of Petroleum and Petroleum ProductsD4175 Terminology Relating to Petroleum Products, Liquid Fuels, and LubricantsD4177 Practice for Automatic Sampling of Petrol

19、eum and Petroleum ProductsD4814 Specification for Automotive Spark-Ignition Engine FuelD5842 Practice for Sampling and Handling of Fuels for Volatility MeasurementD6299 Practice for Applying Statistical Quality Assurance and Control Charting Techniques to Evaluate Analytical Measure-ment System Perf

20、ormanceD6304 Test Method for Determination of Water in Petroleum Products, Lubricating Oils, and Additives by Coulometric KarlFischer TitrationE344 Terminology Relating to Thermometry and HydrometryE456 Terminology Relating to Quality and StatisticsE542 Practice for Calibration of Laboratory Volumet

21、ric ApparatusE1064 Test Method for Water in Organic Liquids by Coulometric Karl Fischer Titration2.2 ANSI Standard:5C-39.1 Requirements for Electrical Analog Indicating Instruments2.3 Energy Institute Standard:IP224/02 Determination of Low Lead Content of Light Petroleum Distillates by Dithizone Ext

22、raction and Colorimetric Method63. Terminology3.1 Definitions:3.1.1 accepted reference value, na value that serves as an agreed-upon reference for comparison, and which is derived as: (1)a theoretical or established value, based on scientific principles, (2) an assigned or certified value, based on

23、experimental work ofsome national or international organization, or (3) a consensus or certified value, based on collaborative experimental work underthe auspices of a scientific or engineering group. E4563.1.1.1 DiscussionIn the context of this test method, accepted reference value is understood to

24、 apply to the Motor octane number of specific referencematerials determined empirically under reproducibility conditions by the National Exchange Group or another recognizedexchange testing organization.3.1.2 Check Fuel, nfor quality control testing, a spark-ignition engine fuel of selected characte

25、ristics having an octane numberaccepted reference value (O.N.ARV) determined by round-robin testing under reproducibility conditions.3.1.3 cylinder height, nfor the CFR engine, the relative vertical position of the engine cylinder with respect to the piston attop dead center (tdc) or the top machine

26、d surface of the crankcase.3.1.4 detonation meter, analog, nfor knock testing, the signal conditioning instrumentation that accepts the electrical signalfrom the detonation pickup and provides an analog output signal to the analog knockmeter.3.1.4.1 DiscussionIn the context of this test method, thre

27、e contemporary generations of apparatus have been developed as detonation meters. Theseare (year of introduction in parenthesis): the 501T Detonation Meter (1969), the 501C Detonation Meter (1979), and the SSD7000Detonation Meter (2017).73.1.5 detonation meter, digital, nfor knock testing, the digit

28、al signal conditioning instrumentation that accepts the electricalsignal from the detonation pickup and provides a digital output signal for display.3.1.6 detonation pickup, nfor knock testing, a magnetostrictive-type transducer that threads into the engine cylinder and isexposed to combustion chamb

29、er pressure to provide an electrical signal that is proportional to the rate-of-change of cylinderpressure.3.1.7 dial indicator reading, nfor the CFR engine, a numerical indication of cylinder height, in thousandths of an inch,indexed to a basic setting at a prescribed compression pressure when the

30、engine is motored.3.1.8 digital counter reading, nfor the CFR engine, a numerical indication of cylinder height, indexed to a basic setting at aprescribed compression pressure when the engine is motored.5 Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New Yor

31、k, NY 10036, http:/www.ansi.org.6 Available from Energy Institute, 61 New Cavendish St., London, WIG 7AR, U.K., http:/www.energyinst.org.uk.7 Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:D02-1870. Contact ASTM CustomerService

32、 at serviceastm.org.D2700 17a23.1.9 dynamic fuel level, nfor knock testing, test procedure in which the fuel-air ratio for maximum knock intensity for sampleand reference fuels is determined using the falling level technique that changes carburetor fuel level from a high or rich mixturecondition to

33、a low or lean mixture condition, at a constant rate, causing knock intensity to rise to a maximum and then decrease,thus permitting observation of the maximum knockmeter reading.3.1.10 equilibrium fuel level, nfor knock testing, test procedure in which the fuel-air ratio for maximum knock intensity

34、forsample and reference fuels is determined by making incremental step changes in fuel-air ratio, observing the equilibrium knockintensity for each step, and selecting the level which produces the highest knock intensity reading.3.1.11 firing, nfor the CFR engine, operation of the CFR engine with fu

35、el and ignition.3.1.12 fuel-air ratio for maximum knock intensity, nfor knock testing, that proportion of fuel to air that produces the highestknock intensity for each fuel in the knock testing unit, provided this occurs within specified carburetor fuel level limits.3.1.13 guide tables, n for knock

36、testing, the specific relationship between cylinder height (compression ratio) and octanenumber at standard knock intensity for specific primary reference fuel blends tested at standard or other specified barometricpressure.3.1.14 knock, nin a spark-ignition engine, abnormal combustion, often produc

37、ing audible sound, caused by autoignition ofthe air/fuel mixture. D41753.1.15 knock intensity, nfor knock testing, a measure of the level of knock.3.1.16 knockmeter, analog, nfor knock testing, the 0 to 100 division analog indicating meter that displays the knock intensitysignal from the analog deto

38、nation meter.3.1.17 knockmeter, digital, nfor knock testing, the 0 to 999 division digital indicating software meter that displays the knockintensity from the digital detonation meter.3.1.18 motoring, nfor the CFR engine, operation of the CFR engine without fuel and with the ignition shut off.3.1.19

39、 motor octane number, nfor spark-ignition engine fuel, the numerical rating of knock resistance obtained by comparisonof its knock intensity with that of primary reference fuels when both are tested in a standardized CFR engine operating under theconditions specified in this test method.3.1.20 octan

40、e number, nfor spark-ignition engine fuel, any one of several numerical indicators of resistance to knock obtainedby comparison with reference fuels in standardized engine or vehicle tests. D41753.1.21 oxygenate, nan oxygen-containing organic compound, which may be used as a fuel or fuel supplement,

41、 for example,various alcohols and ethers. D41753.1.22 primary reference fuel blends above 100 octane, nthe millilitres per U.S. gallon of tetraethyllead in isooctane thatdefine octane numbers above 100 in accordance with an empirically determined relationship.3.1.23 primary reference fuels, nfor kno

42、ck testing, isooctane, n-heptane, volumetrically proportioned mixtures of isooctanewith n-heptane, or blends of tetraetyllead in isooctane that define the octane number scale.3.1.24 primary reference fuel blends below 100 octane, nthe volume percent of isooctane in a blend with n-heptane thatdefines

43、 the octane number of the blend, isooctane being assigned as 100 and n-heptane as zero octane number.3.1.25 quality control (QC) sample, nfor use in quality assurance programs to determine and monitor the precision andstability of a measurement system, a stable and homogeneous material having physic

44、al or chemical properties, or both, similar tothose of typical samples tested by the analytical measurement system; the material is properly stored to ensure sample integrity,and is available in sufficient quantity for repeated, long term testing. D62993.1.26 repeatability conditions, nconditions wh

45、ere independent test results are obtained with the same method on identical testitems in the same laboratory by the same operator using the same equipment within short intervals of time. E4563.1.26.1 DiscussionIn the context of this test method, a short time interval between two ratings on a sample

46、fuel is understood to be not less than thetime to obtain at least one rating on another sample fuel between them but not so long as to permit any significant change in thesample fuel, test equipment, or environment.3.1.27 reproducibility conditions, nconditions where test results are obtained with t

47、he same method on identical test items indifferent laboratories with different operators using different equipment. E4563.1.28 spread, nin knock measurement, the sensitivity of the analog detonation meter expressed in knockmeter divisions peroctane number. (This feature is not a necessary adjustment

48、 in the digital detonation meter.)D2700 17a33.1.29 standard knock intensity, analog, nfor knock testing, that level of knock established when a primary reference fuelblend of specific octane number is used in the knock testing unit at maximum knock intensity fuel-air ratio, with the cylinder height(

49、dial indicator or digital counter reading) set to the prescribed guide table value.The analog detonation meter is adjusted to producean analog knockmeter reading of 50 for these conditions.3.1.30 standard knock intensity, digital, nfor knock testing, that level of knock established when a primary reference fuelblend of specific octane number is used in the knock testing unit at maximum knock intensity fuel-air ratio, with the cylinder height(dial indicator or digital counter reading) set to the prescribed guide table value. The digital deton

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1