ImageVerifierCode 换一换
格式:PDF , 页数:7 ,大小:102.32KB ,
资源ID:513502      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-513502.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D2789-1995(2016) Standard Test Method for Hydrocarbon Types in Low Olefinic Gasoline by Mass Spectrometry《质谱法测定低烯烃汽油中烃类的标准试验方法》.pdf)为本站会员(eastlab115)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D2789-1995(2016) Standard Test Method for Hydrocarbon Types in Low Olefinic Gasoline by Mass Spectrometry《质谱法测定低烯烃汽油中烃类的标准试验方法》.pdf

1、Designation: D2789 95 (Reapproved 2016)Standard Test Method forHydrocarbon Types in Low Olefinic Gasoline by MassSpectrometry1This standard is issued under the fixed designation D2789; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision

2、, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination by massspectrometry of the total paraffins, monocycloparaffins

3、,dicycloparaffins, alkylbenzenes, indans or tetralins or both, andnaphthalenes in gasoline having an olefin content of less than3 % by volume and a 95 % distillation point of less than 210 C(411 F) as determined in accordance with Test Method D86.Olefins are determined by Test Method D1319,orbyTestM

4、ethod D875.1.2 It has not been determined whether this test method isapplicable to gasoline containing oxygenated compounds (forexample, alcohols and ethers).1.3 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.4 This standard

5、does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM S

6、tandards:2D86 Test Method for Distillation of Petroleum Products andLiquid Fuels at Atmospheric PressureD875 Method for Calculating of Olefins and Aromatics inPetroleum Distillates from Bromine Number and AcidAbsorption (Withdrawn 1984)3D1319 Test Method for Hydrocarbon Types in Liquid Petro-leum Pr

7、oducts by Fluorescent Indicator AdsorptionD2001 Test Method for Depentanization of Gasoline andNaphthasD2002 Practice for Isolation of Representative SaturatesFraction from Low-Olefinic Petroleum Naphthas (With-drawn 1998)33. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 The su

8、mmations of characteristic mass fragments aredefined as follows (equations are identical to those in 11.1):(43 paraffins! 5 total peak height of m/e143157171185199.(1)(41 monocycloparaffins! 5 total peak height of m/e141155169183197. (2)(67 dicycloparaffins! 5 total peak height of m/e167168181182195

9、196. (3)(77 alkylbenzenes! 5 total peak height of m/e1771781791911921105110611191120113311341147114811611162. (4)(103 indans and tetralins! 5 total peak height of m/e1103110411171118113111321145114611591160.(5)(128 naphthalenes! 5 total peak height of m/e11281141614211551156. (6)T 5 total ion intens

10、ity 5(411(431(671(771(1031(128.(7)3.1.2 carbon numberby definition, is the average numberof carbon atoms in the sample.3.1.3 mass numberwith a plus sign as superscript, isdefined as the peak height associated with the same massnumber.4. Summary of Test Method4.1 Samples are analyzed by mass spectrom

11、etry, based onthe summation of characteristic mass fragments, to determinethe concentration of the hydrocarbon types. The averagenumber of carbon atoms of the sample is estimated from1This test method is under the jurisdiction of ASTM Committee D02 onPetroleum Products, Liquid Fuels, and Lubricants

12、and is the direct responsibility ofSubcommittee D02.04.0M on Mass Spectroscopy.Current edition approved Oct. 1, 2016. Published November 2016. Originallyapproved in 1969. Last previous edition approved in 2011 as D2789 95 (2011).DOI: 10.1520/D2789-05R16.2For referenced ASTM standards, visit the ASTM

13、 website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3The last approved version of this historical standard is referenced onwww.astm.org.Copyright ASTM Internat

14、ional, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1spectral data. Calculations are made from calibration datawhich are dependent upon the average number of carbon atomsof the sample. Results are expressed in liquid volume percent.5. Significance and Use5.1 A k

15、nowledge of the hydrocarbon composition of gaso-line process streams, blending stocks and finished motor fuelsis useful in following the effect of changes in plant operatingconditions, diagnosing process upsets, blending finished prod-ucts and in evaluating the relationship between compositionand pe

16、rformance properties.6. Apparatus6.1 Mass SpectrometerAny mass spectrometer that passesthe performance test described in Section 8.NOTE 1Calibration and precision data for this method were obtainedon Consolidated Electrodynamics Corp. Type 21-101, 21-102, and 21-103mass spectrometers. These instrume

17、nts operated with an ion sourcetemperature at or near 250 C and at a constant magnetic field of about3100 gauss (G) to 3500 G. Laboratories using either Consolidated Elec-trodynamics Corp. mass spectrometers that operate with different param-eters or instruments other than this design should check t

18、he applicabilityof the calibration data in Table 1. If necessary, individual laboratoriesshould develop their own calibration data using the blends described inTable 2.6.2 Sample Inlet SystemAny sample inlet system thatallows the introduction of the text mixture (8.2) without loss,contamination, or

19、change of composition.NOTE 2Laboratory testing has shown that, unless a special samplingtechnique or a heated inlet system is used, relatively large errors will occurin the determination of small quantities of indans, tetralins, and naphtha-lenes.6.3 ManometerA manometer suitable for direct reading

20、inthe 0 mtorr to 100 mtorr (0 Pa to 13 Pa) range is optional.NOTE 3The expression mtorr as used in this procedure replaces theolder (micron) unit of pressure.6.4 Microburet or Constant-Volume Pipet.7. Reference Standards7.1 Samples of the following hydrocarbons will be required:2-methylpentane, 2,4-

21、dimethylpentane, n-octane,methylcyclopentane, methylcyclohexane, cis-1,2-dimethylcyclohexane, benzene, toluene, and p-xylene(WarningExtremely flammable liquids. Benzene is aTABLE 1 Calibration Data43/T 41/T 67/T 77/T 103/T 128/T ReferenceAParaffins:C60.6949 0.3025 0.0019 0.0006 . . (1)C70.7379 0.258

22、3 0.0027 0.0010 . . (3)C80.7592 0.2362 0.0032 0.0014 . . (3)C90.7462 0.2350 0.0052 0.0021 . 0.0113 (12)C100.7772 0.2007 0.0056 0.0014 . 0.0151 (13)Monocycloparaffins:C60.1234 0.8218 0.0460 0.0086 . . (1)C70.0731 0.8213 0.0952 0.0104 . . (3)C80.0737 0.8279 0.0866 0.0117 . . (3)C90.0884 0.8029 0.0942

23、0.0140 0.0003 0.0003 (12)C100.1471 0.6272 0.2176 0.0080 . . (13)Dicycloparaffins:C80.0057 0.1848 0.7843 0.0246 0.0004 . (4)C90.0171 0.2270 0.7070 0.0483 0.0005 . (5)C100.0114 0.2973 0.6582 0.0324 0.0006 . (6)Alkylbenzenes:C60.0004 0.0004 . 0.9992 . . (2)C70.0146 0.0120 0.0007 0.9726 . . (3)C80.0033

24、0.0112 0.0007 0.9488 0.0359 . (3)C90.0061 0.0218 0.0020 0.9103 0.0598 . (12)C100.0095 0.0350 0.0025 0.8656 0.0839 0.0034 (13)Indans and tetralins:C90.0144 0.0101 0.0002 0.1600 0.8154 . (7)C100.0062 0.0123 0.0044 0.2314 0.7236 0.0222 (8)C110.0231 0.0199 0.0017 0.1619 0.7456 0.0477 (9)Naphthalenes:C10

25、C110.01210.07020.00370.01400.00080.00110.05810.01720.00650.00180.91880.8957(10)(11)AReferences to source of calibration data:(1) National cooperative by letter of Nov. 22, 1965.(2) Local task group cooperative by meeting of March 1966.(3) National cooperative by letter of Aug. 6, 1962.(4) API No. 44

26、8, 100 %, bicyclo-(3.3.0)-octane.(5) Shell data, 100 %, for 1-methyl-cis-(3.3.0)-bicyclooctane.(6) API No. 412, 100 %, trans-decalin.(7) Unweighted API No. 413 and No. 1214 spectra of indan.(8) API No. 1103, 13 %; API No. 1104, 13 %; API No. 941, 37 %; API No. 539, 37 %.(9) Unweighted averages of AP

27、I Nos. 1216, 1106, 1107, 1108, 1109.(10) Unweighted average of local task group (3 laboratories) data.(11) Unweighted average of API No. 990 and No. 991.(12) National cooperative by letter of Oct. 11, 1967.(13) Proposed Method of Test for Hydrocarbon Types in Low Olefinic Gasoline by Mass Spectromet

28、ry; Appendix VII D2-1958.D2789 95 (2016)2poison, carcinogen, and is harmful or fatal if swallowed.). Onlyreagent grade chemicals conforming to the specifications of theCommittee on Analytical Reagents of the American ChemicalSociety,4National Institute of Standards and Technology(NIST) standard hydr

29、ocarbon samples, or other hydrocarbonsof equal purity should be used.8. Performance Test8.1 Calibration for Test MixtureCalibrate the instrumentin accordance with the manufacturers instructions for thecompounds listed in 7.1, using the same manipulative tech-nique as described in 10.2. Express the c

30、alibration data in unitsof peak height per unit of liquid volume (V) at constantsensitivity. Determine 41/V, 43/ V, and 77/V for each ofthe reference standards and calculate a weighted average valuefor each hydrocarbon group type in accordance with thecomposition of the test mixture as described in

31、8.2. Constructan inverse from the averaged coefficients.NOTE 4The volume, V, ordinarily is expressed as microlitres.4Reagent Chemicals, American Chemical Society Specifications, AmericanChemical Society, Washington, DC. For Suggestions on the testing of reagents notlisted by the American Chemical So

32、ciety, see Annual Standards for LaboratoryChemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeiaand National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville,MD.TABLE 2 Compositions of Calibration MixturesComponent (Volume Percent) Paraffins Cyclo-paraffinsCyclo

33、-Alkyl-benzenesComponent (Volume Percent) ParaffinsCyclo-paraffinsAlkyl-benzenesC6Blends C9Blendsn-Hexane 46 . . n-Nonane 33 . .2-Methylpentane 28 . . 2-Methyloctane 20 . .3-Methylpentane 20 . . 3-Methyloctane 16 . .2-2-Dimethylbutane 1 . . 4-Methyloctane 8 . .2,3-Dimethylbutane 5 . . 3-Ethylheptane

34、 3 . .Cyclohexane . 46 . 2,6-Dimethylheptane 12 . .Methylcyclopentane . 54 . 2,2-Dimethylheptane 2 . .Benzene . . 100 3,3-Diethylpentane 1 . .C7Blends2,2,5-Trimethylhexane2,2,5-Trimethylhexane21.n-Heptane 45 . . 2,4-Dimethyl-3-ethylpentane 1 . .2-Methylhexane 23 . . 2,2,3,3-Tetramethylpentane 1 . .3

35、-Methylhexane 16 . . n-Propylcyclohexane . 1 .2,2-Dimethylpentane 4 . . Isopropylcyclohexane . 2 .2,3-Dimethylpentane 6 . . 1-Methyl-c-2-ethylcyclohexane . 3 .2,4-Dimethylpentane 5 . . 1-Methyl-t-2-ethylcyclohexane . 4 .3,3-Dimethylpentane 1 . . 1-Methyl-c-3-ethylcyclohexane . 8 .Methylcyclohexane .

36、 57 . 1-Methyl-t-3-ethylcyclohexane . 8 .Ethylcyclopentane . 9 . 1-Methyl-c-4-ethylcyclohexane . 4 .1,1-Dimethylcyclopentane . 4 . 1-Methyl-t-4-ethylcyclohexane . 5 .1,t-2-Dimethylcyclopentane . 14 . 1,c-2, c-3-trimethylcyclohexane . 2 .1,t-3-Dimethylcyclopentane . 16 . 1,t-2, t-3-trimethylcyclohexa

37、ne . 3 .Toluene . . 100 1,t-2,c-3-trimethylcyclohexane . 3 .C8Blends1,t-2,c-4-trimethylcyclohexane1,t-2,t-4-trimethylcyclohexane.1515.n-Octane 39 . . 1,c-3,c-5-trimethylcyclohexane . 5 .2-Methylheptane 19 . . 1,c-3,t-5-trimethylcyclohexane . 5 .3-Methylheptane 16 . . n-Butylcyclopentane . 1 .4-Methy

38、lheptane 8 . . 1,c-2-Diethylcyclopentane . 12 .3-Ethylhexane 3 . . 1,t-2,c-3,t-4-tetramethylcyclopentane . 4 .2,3-Dimethylhexane 4 . . n-Propylbenzene . . 32,4-Dimethylhexane 5 . . Isopropylbenzene . . 12,5-Dimethylhexane 6 . . 1-Methyl-2-ethylbenzene . . 8Ethylcyclohexane . 20 . 1-Methyl-3-ethylben

39、zene . . 191,t-2-Dimethylcyclohexane . 18 . 1-Methyl-4-ethylbenzene . . 111,c-3-Dimethylcyclohexane . 25 . 1,2,3-Trimethylbenzene . . 101,t-4-Dimethylcyclohexane . 11 . 1,2,4-Trimethylbenzene . . 361-Methyl-c-2-ethylcyclopentane . 7 . 1,3,5-Trimethylbenzene . . 121,1,3-Trimethylcyclopentane . 5 .1,t

40、-2,c-3-Trimethylcyclopentane . 9 .1,t-2,c-4-Trimethylcyclopentane . 5 .Ethylbenzene . . 10p-Xylene . . 23m-Xylene . . 46o-Xylene . . 21D2789 95 (2016)3NOTE 5A desk calculator frequently is used for the calculation of 8.1and in such cases small inverse terms can be undesirable. If necessary, itis per

41、missible to divide all averaged coefficients by some suitable constantprior to inversion in order to obtain larger values in the inverse.8.2 Test MixturePrepare the synthetic mixture by weightfrom reference standards4to obtain a final composition ap-proximating the following but accurately known wit

42、hin 60.07 %:Reference StandardLiquidVolumePercent inMixtureApproximateWeightin Gramsto Give5 mL of Mixture2-Methylpentane 7.2 0.2372,4-Dimethylpentane 9.4 0.318n-Octane 16.6 0.587Methylcyclopentane 7.1 0.267Methylcyclohexane 10.0 0.387cis-1,2-Dimethylcyclohexane 15.5 0.620Benzene 7.7 0.341Toluene 10

43、.0 0.436p-Xylene 16.5 0.714100.0 3.907Record the mass spectrum of the test mixture from m/e+32to 120 using the manipulative technique as described in 10.2.Compute 41/V, 43/V, and 77/V from the spectrum of thetest mixture and calculate the composition using these valuesand the inverse of 8.1. The cal

44、culated composition shouldagree with known concentrations within the following limits:PercentTotal paraffins 0.8Total cycloparaffins 1.3Total aromatics 0.7If the test mixture cannot be analyzed successfully, consid-eration should be given to interference, stability, sensitivity,resolution, sample ha

45、ndling, or ability of the analyst.8.3 BackgroundAfter pumping out the test mixture speci-fied in 10.2, scan the mass spectrum from m/e+40 to 100.Background peaks at 43 and 91 should be less than 0.1 % of thecorresponding peaks in the mixture spectrum. If both tests ofperformance are met, it may be p

46、resumed that the instrument issatisfactory for sample analysis.9. Sample Preparation9.1 Depentanize the sample in accordance with Test MethodD2001.9.2 Determine the olefin content of the depentanized samplein accordance with Test Methods D1319 or D875.10. Procedure10.1 Generally, mass spectrometers

47、are in continuous op-eration and should require no additional preparation beforeanalyzing samples. If the spectrometer has been turned on onlyrecently, check its operation according to the manufacturersinstructions to ensure stability before proceeding. Then makethe performance test (Section 8).10.2

48、 Obtaining the Mass SpectrumUsing a microburet5ora constant-volume pipet, introduce sufficient sample throughthe inlet system to give a pressure of 20 to 60 mtorr (2.7 to 8.0Pa). Record the amount of sample introduced and the finalpressure after expansion into the inlet system when a microbu-ret and

49、 manometer are used. Recharge the sample untilpressure readings that differ by 1 % or less are obtained.Attaining this pressure check means that a given microburet isbeing used at constant volume. When the pressure check isobtained, admit the sample to the mass spectrometer and recordthe mass spectrum of the sample from m/e+32 to 186.11. Calculation11.1 PeaksRead peak heights from the record of the massspectrum of the sample corresponding to m/e+ratios of 41, 43,55, 57, 67, 68, 69, 71, 77, 78, 79, 81, 82, 83, 84, 85, 86, 91, 92,95,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1