1、Designation: D 3078 02 (Reapproved 2008)Standard Test Method forDetermination of Leaks in Flexible Packaging by BubbleEmission1This standard is issued under the fixed designation D 3078; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revisi
2、on, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope1.1 This test method cov
3、ers the determination of gross leaksin flexible packaging containing a headspace gas. Test sensi-tivity is limited to 1 3 105atm cm3/s (1 3 106Pa m3/s) oreven less sensitive as indicated in a recent interlaboratory test(reported in Section 12).1.2 Small leaks may not be detected by this procedure.Vi
4、scoelastic effects on the products, or entrapped air, becomesignificant and prevent passage through small openings. Posi-tive pressure inside the pouch after the vacuum is drawn mayforce the product to plug small leaks. The size of the leak thatcan be detected is dependent upon the products containe
5、d, thenature of the packaging material, and the test parametersselected.1.3 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units that are provided for information onlyand are not considered standard.1.4 This stan
6、dard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 A
7、STM Standards:2E 425 Definitions of Terms Related to Leak Testing3E 515 Test Method for Leaks Using Bubble Emission Tech-niquesF98 Practices for Determining Hermeticity of ElectronDevices by a Bubble Test33. Terminology3.1 Definition:3.1.1 leakany opening in a flexible package that, contraryto inten
8、tion, either allows the contents to escape or substancesto enter.4. Apparatus4.1 Vacuum ChamberAny transparent container capableof withstanding approximately one atmosphere pressure differ-ential, fitted with a vacuum-tight cover. A vacuum gage, aninlet tube from a source of vacuum, and an outlet tu
9、be to theatmosphere shall be connected to the chamber cover. The inletand outlet tubes shall be equipped with hand valves. Attachedto the underside of the cover shall be a transparent plate thatwill closely approximate the inside dimensions of the containerand be such a distance from the top of the
10、container that whenit is two-thirds filled with fluid, the attached plate will bepositioned 1 in. (25 mm) under the fluid.5. Materials5.1 Immersion FluidsUse an immersion fluid which doesnot degrade the package being tested. Fluids with a low surfacetension are generally more sensitive. Examples inc
11、lude water,water treated with a wetting agent, denatured alcohol, andmineral oil. Other possible fluids are listed in Test MethodE 515 and Practices F98.6. Sampling6.1 The number of specimens used in the test sample maybe varied according to the nature of the product, its cost, itssize, and whether
12、the specimens are taken from a productionline in a normal packaging operation, or are few in number, orare to be used only for purposes of comparative evaluation ofprocedures or materials.7. Test Specimen7.1 Flexible Package, with or without its intended contents.1This test method is under the juris
13、diction ofASTM Committee F02 on FlexibleBarrier Packaging and is the direct responsibility of Subcommittee F02.40 onPackage Integrity.Current edition approved April 1, 2008. Published May 2008. Originallyapproved in 1972. Last previous edition approved in 2002 as D 3078 02.2For referenced ASTM stand
14、ards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Withdrawn.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Cons
15、hohocken, PA 19428-2959, United States.8. Conditioning8.1 The test sample and test fluid shall be at equilibriumwith normal room temperature.9. Procedure9.1 Submerge the specimen in fluid contained in the vesselwithin the vacuum chamber. The uppermost surface of thespecimen shall be covered by not l
16、ess than 1 in. (25 mm) offluid.NOTE 1Two or more small packages may be tested at the same time,provided that they are placed in such a manner that all parts of everypackage under test can be observed for leakage during the test.9.2 Set the cover on the vacuum chamber, close the outletvalve, and turn
17、 on the vacuum so that the gage rises slowly(approximately 1 in. Hg/s) to a selected vacuum level. Thevacuum level chosen should be as large as possible in order toensure optimal sensitivity of the test. Limiting factors willinclude package fragility, the degree of package expansion, andthe test-flu
18、id vapor pressure.9.3 During the rise in vacuum, observe the submergedspecimen for leakage in the form of a steady progression ofbubbles from the flexible container. Isolated bubbles caused byentrapped air are not considered as leaks. Also note theapproximate increase in package volume. The pressure
19、 differ-ential of the test is inversely related to the volume increase ofthe sample; therefore, large volume increases significantlydetract from the severity of the test. Flexible packaging withlittle or no headspace cannot be reliably evaluated with this testmethod.9.4 Hold the vacuum for a specifi
20、ed time period; 30 s isrecommended, but this may be set at the testers discretion.9.5 Release the vacuum, remove the lid, and examine thespecimen for the presence of test fluid inside the specimen.10. Interpretation of Results10.1 If there are bubbles definitely attributable to leaks in aspecimen du
21、ring the rise of vacuum, or when held at fullvacuum, the specimen fails the test.10.2 If test fluid attributable to a leak is inside a specimen,the specimen fails the test.10.3 If there are no bubbles observed attributable to leaks,and if no test fluid attributable to a leak is inside a specimen,the
22、 specimen passes the test.11. Report11.1 Report the following information:11.1.1 A statement that the test was conducted in compli-ance with this test method or a description of the deviationsfrom this test method.11.1.2 Identification of the specimen and the specific mate-rial tested.11.1.2.1 Ident
23、ification of the test fluid and the maximumvacuum level employed;11.1.2.2 Astatement regarding the approximate average andrange of sample expansions when at maximum vacuum; and11.1.2.3 The time period held at maximum vacuum.11.1.3 A statement whether or not leakage occurred, and ifpossible, a report
24、 of the location of each leak.11.1.4 A statement of the number of specimens included inthe test and the number of failures, if any.11.1.5 When the test is performed to check compliance withrequirements, a statement that the sample did or did not meetthe requirement, and identification of the source
25、for therequirement.11.1.6 When the test is conducted to evaluate or compareproducts, materials, or methods, a statement of any observa-tions that may lead to improvements.12. Precision and Bias12.1 An interlaboratory test was conducted to determineeach participating laboratorys ability to detect lea
26、ks of varioussizes when tested at various vacuum levels in accordance withthe test method. If a leak was detected, the participant was thenasked to quantify the size of the leak by determining the timerequired to leak12 mL of air.12.1.1 Details of the test protocol, including a description ofthe app
27、aratus, are in preparation and will be available as aresearch report.12.1.2 Three laboratories participated with each providingthree independent researchers. Each of these tests were repli-cated three times by each researcher. The same measured leaksand test apparatus were used at each location.12.1
28、.3 The three vacuum levels tested (“low”, “medium”and “high” were relative terms used only to differentiateconditions), were:Low vacuum 12.5 6 0.5 in. HgMedium vacuum 18.5 6 0.5 in. HgHigh vacuum 24.5 6 0.5 in. Hg12.1.4 The leaks used (“big”, “medium,” “small” and “verysmall” were relative terms use
29、d only to differentiate variables)were characterized by a helium leak detector as listed below.By most standards, all of these leaks were quite large.Big 6 E-02 cc/s HeMedium 7 E-03 cc/s HeSmall 3 E-03 cc/s HeVery small 1 E-04 cc/s He12.1.5 Precision, characterized by repeatability, Sr, r, andreprod
30、ucibility, SR, R has been determined for the materials asshown in the tables that follow.12.1.6 Values reported below are in seconds to leak12 mLof air except for the last material, “very small”, which waseither reported as bubble produced within 1 min (1) or nobubble produced (0).12.1.7 Precision S
31、tatement for Test Condition: Low Vacuum(12 in. Hg)Materials Average Sr SR r RBig 6E-02 64.778 7.772 14.186 21.762 39.721Medium 7E-03 181.185 10.653 12.601 29.828 35.284Small 3E-03 739.148 30.264 100.144 84.738 280.404Very small 1E-04 0.000 0.000 0.000 0.000 0.000Under this relatively weak vacuum (12
32、 in. Hg), the “verysmall” leak at 1 E-04 cc/s Helium did not produce any bubbleswithin 1 min, which is taken as “non-detectable.” All otherleaks were easily detected.12.1.8 Precision Statement for Test Condition: MediumVacuum (18 in. Hg)D 3078 02 (2008)2Materials Average Sr SR r RBig 6E-02 26.111 2.
33、667 3.918 7.467 10.971Medium 7E-03 82.111 4.073 6.196 11.406 17.350Small 3E-03 365.000 18.963 32.549 53.096 91.138Very small 1E-04 0.037 0.192 0.192 0.539 0.539With this medium level of vacuum (18 in. Hg), the “verysmall” leak produced a bubble 1 time out of 27 trials. This isessentially “non-detect
34、able.” All other leaks were easily de-tected.12.1.9 Precision Statement for Test Condition: HighVacuum (24 in. Hg)Materials Average Sr SR r RBig 6E-02 10.481 1.000 2.187 2.800 6.122Medium 7E-03 30.407 1.678 4.650 4.698 13.019Small 3E-03 119.037 9.724 24.987 27.227 69.962Very small 1E-04 0.778 0.000
35、0.441 0.000 1.235With this highest vacuum level used (24 in. Hg), the “verysmall” leak produced a bubble in 78 % of the trials. This seemsto indicate that a leak of the size of 1 E-04 is “detectable” mostof the time but is close to the detection limit of the method andtest conditions.ASTM Internatio
36、nal takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their
37、 own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be
38、 addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards
39、, at the address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org).D 3078 02 (2008)3
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1