ImageVerifierCode 换一换
格式:PDF , 页数:6 ,大小:107.15KB ,
资源ID:516550      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-516550.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D4212-2010 Standard Test Method for Viscosity by Dip-Type Viscosity Cups《浸式粘度杯测定粘度的标准试验方法》.pdf)为本站会员(orderah291)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D4212-2010 Standard Test Method for Viscosity by Dip-Type Viscosity Cups《浸式粘度杯测定粘度的标准试验方法》.pdf

1、Designation: D4212 10Standard Test Method forViscosity by Dip-Type Viscosity Cups1This standard is issued under the fixed designation D4212; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in par

2、entheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of viscosityof paints, varnishes, lacquers, inks, and related liquid materialsby dip-type viscosity cups.

3、This test method is recommendedfor viscosity control work within one plant or laboratory andshould be used to check compliance with specifications onlywhen sufficient controls have been instituted to ensure ad-equate comparability of results.1.2 Viscosity cups are designed for testing of Newtonianan

4、d near-Newtonian liquids. If the test material is non-Newtonian, for example, shear-thinning or thixotropic, anothermethod, such as Test Methods D2196, should be used. Undercontrolled conditions, comparisons of the viscosity of non-newtonian materials may be helpful, but viscosity determina-tion met

5、hods using controlled shear rate or shear stress arepreferred.1.3 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are for informationonly.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is t

6、heresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D1200 Test Method for Viscosity by Ford Viscosity CupD2196 Test Methods for Rheologic

7、al Properties of Non-Newtonian Materials by Rotational (Brookfield type) Vis-cometerD4287 Test Method for High-Shear Viscosity Using aCone/Plate ViscometerE1 Specification for ASTM Liquid-in-Glass Thermometers3. Terminology3.1 Definitions:3.1.1 near-Newtonian liquid, na liquid in which thevariation

8、of viscosity with shear rate is small and the effect onviscosity of mechanical disturbances such as stirring is negli-gible.3.1.2 Newtonian liquid, na liquid in which the viscosity isindependent of the shear stress or shear rate. If the ratio ofshear stress to shear rate is not constant, the liquid

9、is non-Newtonian.4. Summary of Test Method4.1 The cup is completely immersed in the material to betested, withdrawn, and the time for the material to flow througha hole in the base of the cup is measured.5. Significance and Use5.1 Viscosity is a measure of the fluidity of a material.Viscosity data a

10、re useful in the determination of the ease ofstirring, pumping, dip coating, or other flow-related propertiesof paints and related fluids.5.2 This type of cup is used to measure viscosity because itis easy to use, robust, and may be used in tanks, reservoirs, andreactors.5.3 There are other types of

11、 apparatus for measuring vis-cosity in the laboratory that provide better precision and bias,including the Ford viscosity cup (Test Method D1200), and theBrookfield viscometer (Test Methods D2196).5.4 Certain higher shear rate devices such as cone/plateviscometers (Test Method D4287) provide more in

12、formationabout sprayability, roll coatability, and other high-shear raterelated properties of coatings.6. Apparatus6.1 Zahn Viscosity CupNo. 1 through No. 5 Zahn viscos-ity cups made of corrosion- and solvent-resistant materials.The nominal capacity of the cup is 44 mL, but may vary from43 to 49 mL,

13、 depending on the manufacturer. A diagram of aZahn cup is given in Fig. 1. The dimensions, including orifices,are only approximate because the cups are not made to auniform specification. Each manufacturer produces a different1This test method is under the jurisdiction of ASTM Committee D01 on Paint

14、and Related Coatings, Materials, and Applications and is the direct responsibility ofSubcommittee D01.24 on Physical Properties of Liquid Paints and Paint Materials.Current edition approved July 1, 2010. Published July 2010. Originally approvedin 1982. Last previous edition approved in 2005 as D4212

15、 99 (2005). DOI:10.1520/D4212-10.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM Internationa

16、l, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.cup and considerable variation between batches from somemanufacturers has been noted in the past. This is a majorreason why Zahn cups should not be referenced in specifica-tions between producer and user only when

17、 controls sufficientto ensure adequate cup-to-cup and operator-to-operator com-parison are included. (See Appendix X1 for additional infor-mation on Zahn Cups.)NOTE 1The various cup numbers are for identification of the viscosityranges within the series only and should not be used for comparisonbetw

18、een different kinds of cups, that is, a No. 2 Zahn cup has norelationship whatsoever with a No. 2 Shell cup.6.1.1 Nominal Zahn cup orifice diameters are listed in TableX2.1. Cup No. 1 with the smallest orifice is used for determin-ing the viscosity of thin-bodied materials. Cup No. 2 is for usewith

19、clears, lacquers, enamels, and press-side adjustment offlexographic inks; cups Nos. 3 and 4 are for use with moreviscous paints and inks (No. 3 for manufacturing of flexo-graphic inks); and cup No. 5 is used for silk screen inks.6.2 Shell Viscosity Cup3No. 1 through No. 6 Shell vis-cosity cups made

20、of stainless steel with a capacity of 23 mLand a 25-mm (1-in.) long capillary in the bottom and conform-ing to the dimensions shown in Fig. 2.6.2.1 Nominal Shell cup orifice diameters are listed in TableX2.1. Cup Nos. 1 through 212 are recommended for use withreduced rotogravure inks; No. 2 is for u

21、se with flexographic3Shell cups may be obtained from the Norcross Corp., 255 Newtonville Ave.,Newton, MA 02158. This committee is not aware of any other source for flow cupshaving properties similar enough to the Shell cup to be included in this test method.If you have knowledge of a cup that should

22、 be considered, please provide details toASTM International Headquarters. Your comments will receive careful consider-ation at a meeting of the responsible technical committee,1which you may attend.NOTE 1Dimensions are approximate only and may vary with the manufacturer and from batch to batchFIG. 1

23、 Zahn Cup Nominal DimensionsD4212 102inks; Nos. 3 through 4 are used for industrial enamels,lacquers, flexographic, and gravure inks; Nos. 5 and 6 are usedfor heavy materials.6.3 Calibration ThermometerASTM Saybolt ViscosityThermometer 17F having a range of 66 to 80F and subdivi-sions of 0.2F, or 17

24、C having a range of 19 to 27C andsubdivisions of 0.1C, both conforming to the requirements ofSpecification E1. Thermometers having subdivisions otherthan these may be used depending on the sensitivity of thematerial to be tested, the demands of the application, and theagreement between the purchaser

25、 and seller. In addition,temperature measuring devices such as non-mercury liquid-in-glass thermometers, thermocouples, or platinum resistancethermometers that provide equivalent or better accuracy andprecision, that cover the temperature range for thermometer17C and 17F, may be used.6.4 TimerAny ti

26、ming device may be used provided thatthe readings can be taken with a discrimination of 0.1 s orbetter.7. Test Materials7.1 The material to be tested should be visibly homoge-neous and free from any foreign material or air bubbles.8. Temperature of Testing8.1 Measurements should be made at 25C (77F)

27、 unlessotherwise specified. Temperature drift during the test should bekept to a minimum. The viscosities of paints and relatedmaterials are highly dependent on temperature. Differences intemperature between measurements can give substantiallydifferent viscosities (up to 5 % per F). For careful work

28、, thetemperature should be taken in the efflux stream, but forprocess control (such as monitoring a dip tank), this is notnecessary.8.2 A temperature correction curve may be constructed foreach liquid by plotting viscosity (seconds) against temperatureover the expected temperature range. With this c

29、urve, aviscosity determined at one measured temperature may beconverted quickly to a viscosity at another temperature.NOTE 2When dip cups are used for original purposes, that is thinningor monitoring of materials in tanks, coaters, etc., temperature is notimportant. This is because the key to good o

30、peration is to maintain thefluid within a certain range of dip cup-seconds regardless of the tempera-ture of the fluid.9. Checking and Calibration of Cups9.1 Cups should be checked in accordance with the proce-dure described in Appendix X2. The frequency of this dependsupon the amount of use and car

31、e that the individual cupreceives, and the level of precision required.9.2 Cups may be calibrated with standard fluids accordingto the procedure in Appendix X3. However, because theviscosity of standard fluids can vary significantly with tem-perature and due to difficulty in obtaining adequate tempe

32、raturecontrol with dip cups, calibration is a difficult procedure thatmust be done with great care and knowledge.10. Procedure10.1 Choose the proper cup so that the time of efflux will bebetween 20 and 80 s. See Table 1 for viscosity ranges for thevarious cups.NOTE 3The formulas used in this test me

33、thod to describe theconversion from Zahn seconds to stokes are linear, the actual cup responseis not. The range of 20 to 80 s covers the most linear portion of each cup.In addition, below 20 s, turbulent flow may cause additional inconsisten-cies. Above 80 s, factors that may impact on the precision

34、 include; loss ofsolvent (and therefore varying viscosity), “skinning” of the liquid in thecup, intermittent flow.FIG. 2 Shell CupD4212 10310.2 Immerse the cup in the container, which may be a canor beaker, but is more likely to be a thinning or mixing tank oreven a resin reactor. Stir or agitate th

35、e fluid well to giveuniform temperature and density. Allow the cup to remain inthe fluid for 1 to 5 min to attain thermal equilibrium. (Becauseof their greater mass, Shell cups should remain in the fluid forthe full 5 min.)NOTE 4Dip cups are not recommended for use with thixotropic (timedependent) m

36、aterials but if used for them (such as gravure or flexographicinks), more vigorous agitation will be necessary to break up the structurebefore the measurement is made.10.3 Lift the cup vertically out of the material in a quick,steady motion. As the top edge of the cup breaks the surface,start the ti

37、mer. During the time of flow, hold the cup verticallyno more than 15.2 cm (6 in.) above the level of the liquid. Stopthe timer at the first definite break in the stream at the base ofthe cup. The efflux time in seconds constitutes the viscosity. Itis common to make only a single measurement, but for

38、 greaterprecision and accuracy the mean of two or more measurementsshould be taken.NOTE 5The cup should not be held by the loop handle during themeasurement process. Most manufacturers equip the cup with a ringthrough the loop handle. Holding the cup by this ring will help to ensurethat the cup hang

39、s vertically.11. Care of Cups11.1 Following each determination, clean the cup with asuitable solvent and a soft brush. Use no metal tools in contactwith the instrument as nicks or wear of the drilled orifice affectthe accuracy of the cup.12. Report12.1 Report the efflux time to the nearest 0.2 s for

40、 Zahn orShell cup No. _, manufactured by _, (in the case ofZahn cups) the temperature of the fluid (where measured), andwhether the result is from a single measurement or the mean oftwo of more measurements.13. Precision and Bias13.1 The most satisfactory results when using dip cups areobtained when

41、 viscosity is being controlled at a single locationonly. However, when comparisons between locations are made,cups from the same manufacturer must be used or other actiontaken to ensure compatibility of results. The following criteriacan be used for judging the acceptability of results at the 95 %co

42、nfidence level:13.1.1 Zahn CupsPrecision was determined on the basisof an interlaboratory test in which six laboratories used newZahn cups (all from the same set from the same manufacturer)to test eight paints covering a broad range of viscosities. Thewithin-laboratory coefficient of variation was 3

43、.7 % and thebetween-laboratories coefficient of variation was 11.5 %.Based on these coefficients the following criteria should beused for judging the acceptability of results at the 95 %confidence level:13.1.1.1 RepeatabilityTwo results, each the mean of twomeasurements, obtained by the same operato

44、r should beconsidered suspect if they differ by more than 11 % of theirmean value.13.1.1.2 ReproducibilityTwo results, each the mean oftwo measurements, obtained by operators in different labora-tories should be considered suspect if they differ by more than33 % of their mean value.NOTE 6The values

45、used to determine the precision were obtainedunder ideal conditions (a single set of cups), reproducibility in practice canbe just as good, by employing strict controls and good techniques.13.1.1.3 BiasBias does not apply to this test method as noacceptable standards exist.NOTE 7Since the precision

46、values were obtained under ideal condi-tions (a single set of cups), reproducibility in practice probably is poorerthan that given (perhaps as bad as 50 %).13.1.2 Shell CupsPrecision was determined on the basisof an interlaboratory test in which four laboratories testedseven paints covering a broad

47、range of viscosities. Thewithin-laboratory coefficient of variation was 3.2 % and thebetween-laboratories coefficient of variation was 6.3 %. Basedon these coefficients the following criteria should be used forjudging the acceptability of results at the 95 % confidencelevel:13.1.2.1 RepeatabilityTwo

48、 results, each the mean of twomeasurements, obtained by the same operator should beconsidered suspect if they differ by more than 9 % of theirmean value.13.1.2.2 ReproducibilityTwo results, each the mean oftwo measurements, obtained by operators in different labora-tories should be considered suspec

49、t if they differ by more than18 % of their mean value.13.1.2.3 BiasBias does not apply to this test method as noacceptable standards exist.14. Keywords14.1 dip cup(s); flow cup(s); Shell cup(s); viscosity; Zahncup(s)TABLE 1 Approximate Viscosity Ranges, cST (mm2/s) (RoughlyCorresponding to 20 to 80 s Flow Time)Cup Number Zahn Cup Shell Cup1A560 2202 20250 1050212 . 20803 100800 30120312 . 401704 2001200 702705 4001800 1255206 . 3201300AThe lower limit for the Zahn No. 1 cup is 35 s rather than 20 s.D4212 104APPENDIXES(Nonmandato

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1