ImageVerifierCode 换一换
格式:PDF , 页数:6 ,大小:230.13KB ,
资源ID:517210      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-517210.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D4491-1999a(2009) Standard Test Methods for Water Permeability of Geotextiles by Permittivity《通过介电常数测试土工合成织物的水渗透性的标准试验方法》.pdf)为本站会员(eastlab115)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D4491-1999a(2009) Standard Test Methods for Water Permeability of Geotextiles by Permittivity《通过介电常数测试土工合成织物的水渗透性的标准试验方法》.pdf

1、Designation: D4491 99a (Reapproved 2009)Standard Test Methods forWater Permeability of Geotextiles by Permittivity1This standard is issued under the fixed designation D4491; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year

2、of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope1.1 These test methods cover procedure

3、s for determiningthe hydraulic conductivity (water permeability) of geotextilesin terms of permittivity under standard testing conditions, inthe uncompressed state. Included are two procedures: theconstant head method and the falling head method.1.2 The values stated in SI units are to be regarded a

4、s thestandard. The inch-pound units stated in parentheses areprovided for information only.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practi

5、ces and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D123 Terminology Relating to TextilesD653 Terminology Relating to Soil, Rock, and ContainedFluidsD4439 Terminology for GeosyntheticsD5199 Test Method for Measuring the Nominal Thick

6、nessof GeosyntheticsE691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test Method2.2 ASTM Adjuncts:Detailed Drawing and Materials List for Construction, 10Drawings33. Terminology3.1 Definitions:3.1.1 geotechnics, nthe application of scientific methodsand engineerin

7、g principles to the acquisition, interpretation,and use of knowledge of materials of the earths crust to thesolution of engineering problems.3.1.1.1 DiscussionGeotechnics embraces the fields of soilmechanics, rock mechanics, and many of the engineeringaspects of geology, geophysics, hydrology, and r

8、elated sci-ences.3.1.2 geotextile, na permeable geosynthetic comprisedsolely of textiles.3.1.3 permeability, nthe rate of flow of a liquid under adifferential pressure through a material.3.1.3.1 DiscussionThe nominal thickness is used as it isdifficult to evaluate the pressure on the geotextile duri

9、ng thetest, thereby making it difficult to determine the thickness ofthe fabric under these test conditions.3.1.4 permeability, nof geotextiles, hydraulic conductiv-ity.3.1.5 permittivity, (c), (T1), nof geotextiles, the volu-metric flow rate of water per unit cross sectional area per unithead under

10、 laminar flow conditions, in the normal directionthrough a geotextile.3.1.6 For the definitions of other terms relating to geotex-tiles, refer to Terminology D4439. For the definitions of textileterms, refer to Terminology D123. For the definition ofcoefficient of permeability, refer to Terminology

11、D653.4. Summary of Test Methods4.1 These test methods describe procedures for determiningthe permittivity of geotextiles using constant head or fallinghead test procedures, as follows:4.1.1 Constant Head TestAhead of 50 mm (2 in.) of wateris maintained on the geotextile throughout the test. Thequant

12、ity of flow is measured versus time. The constant headtest is used when the flow rate of water through the geotextileis so large that it is difficult to obtain readings of head changeversus time in the falling head test.1These test methods are under the jurisdiction of ASTM Committee D35 onGeosynthe

13、tics and are the direct responsibility of Subcommittee D35.03 onPermeability and Filtration.Current edition approved Nov. 1, 2009. Published December 2009. Originallyapporoved in 1985. Last previous edition approved in 2004 as D4491 041. DOI:10.1520/D4491-99R09.2For referenced ASTM standards, visit

14、the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Detailed drawings and a materials list for construction are available fromASTM Headquarters. Reque

15、st adjunct No. ADJD4491.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.NOTE 1Data has shown agreement between the falling and constanthead methods of determining permittivity of geotextiles.4Selection of thetest method, that is, con

16、stant or falling head, is left to the technicianperforming the test.4.1.2 Falling Head TestA column of water is allowed toflow through the geotextile and readings of head changesversus time are taken. The flow rate of water through thegeotextile must be slow enough to obtain accurate readings.5. Sig

17、nificance and Use5.1 These test methods are considered satisfactory for ac-ceptance testing of commercial shipments of geotextiles sincethe methods have been used extensively in the trade foracceptance testing.5.1.1 In case of a dispute arising from differences inreported test results when using the

18、se test methods for accep-tance testing of commercial shipments, the purchaser and thesupplier should conduct comparative tests to determine if thereis a statistical bias between their laboratories. Competentstatistical assistance is recommended for the investigation ofbias.As a minimum, the two par

19、ties should take a group of testspecimens that are as homogeneous as possible and that arefrom a lot of material of the type in question. The testspecimens should then be randomly assigned in numbers toeach laboratory for testing. The average results from the twolaboratories should be compared using

20、 Students t-test forunpaired data and an acceptable probability level chosen by thetwo parties before the start of testing. If a bias is found, eitherits cause must be found and corrected, or the purchaser and thesupplier must agree to interpret future test results in light of theknown bias.5.1.2 Pe

21、rmittivity is an indicator of the quantity of waterthat can pass through a geotextile in an isolated condition.5.1.3 As there are many applications and environmentalconditions under which a geotextile may be used, care shouldbe taken when attempting to apply the results of these testmethods to the f

22、ield performance of a geotextile.5.2 Since there are geotextiles of various thicknesses in use,evaluation in terms of their Darcy coefficient of permeabilitiescan be misleading. In many instances, it is more significant toevaluate the quantity of water that would pass through ageotextile under a giv

23、en head over a particular cross-sectionalarea; this is expressed as permittivity.5.3 If the permeability of an individual geotextile is ofimportance, a nominal coefficient of permeability, as related togeotechnical engineering, may be computed. By multiplyingpermittivity times the nominal thickness

24、of the geotextile, asdetermined by Test Method D5199, the nominal coefficient ofpermeability is obtained.NOTE 2The nominal thickness is used as it is difficult to evaluate thepressure on the geotextile during the test, thereby making it difficult todetermine the thickness of the fabric under these t

25、est conditions.6. Apparatus6.1 The apparatus shall conform to one of the followingarrangements:6.1.1 The apparatus must be capable of maintaining aconstant head of water on the geotextile being tested, or6.1.2 The apparatus must be capable of being used as fallinghead apparatus.6.2 In addition, the

26、apparatus must not be the controllingagent for flow during the test. It will be necessary to establisha calibration curve of volumetric flow rate versus head for theapparatus alone in order to establish compliance with thisrequirement (see 11.7).6.3 Refer to Fig. 1 for a schematic drawing of a devic

27、e thatconforms to all of the above requirements. The device consistsof an upper and lower unit, which fasten together. Thegeotextile specimen is positioned in the bottom of the upperunit. There is a standpipe for measuring the constant headvalue. The rotating discharge pipe allows adjustment of theh

28、ead of water at the bottom of the specimen.3See ADJD4491.NOTE 3The location of the manometer for measuring the headloss ineither the constant head or falling head method shall be located directlybeneath the specimen. For the device shown in Fig. 1, this may beaccomplished by drilling a small (3mm;18

29、 in) diameter hole in the topplate of the bottom reservoir tank directly beneath the specimen, andattaching the manometer to this plate.7. Sampling7.1 Lot SampleAs a lot sample for acceptance testing,take at random the number of rolls of geotextile directed in anapplicable material specification or

30、other agreement betweenthe purchaser and the supplier. Consider rolls of geotextile tobe the primary sampling units. If the specification requiressampling during manufacture, select the rolls for the lot sampleat uniformly spaced time intervals throughout the productionperiod.NOTE 4An adequate speci

31、fication or other agreement between thepurchaser and the supplier requires taking into account the variabilitybetween rolls of geotextile and between specimens from a swatch from aroll of geotextile so as to provide a sampling plan with a meaningfulproducers risk, consumers risk, acceptable quality

32、level, and limitingquality level.7.2 Laboratory SampleTake for the laboratory sample afull roll width sample extending a minimum of 1 m along theselvage from each sample roll such that the requirements ofSection 9 can be met. Take a sample that will exclude materialfrom the outer wrap of the roll or

33、 the inner wrap around thecore unless the sample is taken at the production site, at whichpoint inner and outer wrap material may be used.8. Test Water Preparation8.1 To provide reproducible test results, the test water shallbe de-aired under a vacuum of 710 mm (28 in.) of mercury(Hg) for a period o

34、f time to bring the dissolved oxygen contentdown to a maximum of six parts per million. The dissolvedoxygen content may be determined by either commerciallyavailable chemical kits or by a dissolved oxygen meter.NOTE 5The de-airing system may be either a commercially availablesystem or one consisting

35、 of a vacuum pump capable of removing aminimum of 150 L/min of air in connection with a non-collapsible storagetank with a large enough storage capacity for the test series, or at least onespecimen at a time.4Supporting data have been filed at ASTM International Headquarters and maybe obtained by re

36、questing Research Report RR: D35-1007.D4491 99a (2009)28.2 Allow the de-aired water to stand in a closed storagetank under a slight vacuum until room temperature is attained.9. Specimen Preparation9.1 To obtain a representative value of permittivity, takefour specimens from each full width laborator

37、y sample asdescribed below.9.2 Referring to Fig. 2, select four specimens, A, B, C, andD, as follows:9.2.1 Select four specimens equally spaced along a diagonalline extending from the lower left hand corner to the upperright hand corner of the laboratory sample. Neither specimenAor D shall be closer

38、 to the corner of the laboratory sample than200 mm (8 in.).9.2.2 Take specimen A at the center of the sample, B at onecorner (center located 200 mm (8 in.) from the corner), Cmidway between A and B, and D the same distance from A asC, located on a line with A, B, and C.FIG. 1 Constant and Falling He

39、ad Permeability ApparatusD4491 99a (2009)39.2.3 Cut specimens shall fit the testing apparatus, forexample, 73 mm (2.87 in.) in diameter for the device illustratedin Fig. 1.9.3 Condition the specimen by soaking in a closed containerof de-aired water, at room conditions, for a period of 2 h. Theminimu

40、m specimen diameter is to be 50 mm (2 in.).NOTE 6If the illustrated device is used, the specimens are attached tothe specimen ring by contact cement.10. Operator Process Control10.1 Prepare four specimens of Standard U.S. Mesh Sieveto fit the test apparatus.10.2 Following Section 11 or Section 13, d

41、epending on themethod to be used for the geotextile specimens, perform testingon each mesh specimen.10.3 Based on an interlaboratory test, involving sevenlaboratories, the permittivity of No 200 Standard US MeshSieve material has been determined to be 5.00 s1, with astandard deviation of 0.65.10.3.1

42、 New operator process control shall be performeduntil it is demonstrated that the operator is proficient in testperformance as demonstrated by obtaining the value of per-mittivity stated in 10.3, plus or minus two standard deviations.10.3.2 Following initial proficiency testing, the operatorshall pe

43、rform process control testing on a semi-annual basis.CONSTANT HEAD TEST11. Procedure11.1 Assemble the apparatus with the specimen in place.11.2 Open the bleed valve and backfill the system throughthe standpipe or discharge pipe, with de-aired water. Backfill-ing in this manner forces any trapped air

44、 out of the system andthe geotextile.NOTE 7The water should be at the bottom level of the specimen at thetime of specimen installation.11.3 Close the bleed valve once water flows from it.Continue to fill the apparatus with de-aired water until thewater level reaches the overflow.11.4 With water flow

45、ing into the system through the waterinlet, adjust the discharge pipe along with the rate of waterflowing into the apparatus to obtain a 50-mm (2-in.) head ofwater on the geotextile. This is the head (h) under which thetest will be performed initially.11.5 Submerge a tube attached to a source of vac

46、uum to justabove (10 mm (0.5 in.) the surface of the geotextile, movingthe tube gently over the surface while applying a slight vacuumin order to remove any trapped air that may be in or on thespecimen. If necessary, readjust the head to 50 mm (2 in.) afterremoving the vacuum.11.6 Record the values

47、of time (t), quantity of flow (Q)ascollected from the discharge pipe, and water temperature (T),holding the head at 50 mm (2 in.). Make at least five readingsper specimen and determine an average value of permittivityfor the specimen.NOTE 8The quantity of flow may be measured in millilitres and then

48、converted to cubic millimetres for the computation of permittivity (1mL = 1000 mm3).11.7 After the first specimen has been tested under a 50-mm(2-in.) head, using the same specimen, start with a 10-mm(38-in.) head and repeat the procedure. Increase the head by 5mm (316 in.) after every five readings

49、 Increase the head untila 75-mm (3-in.) head is reached. Use this data to determine theregion of laminar flow. Plot volumetric flow rate, v, (where vequals Q/At, values defined in 12.1) versus head. The quantityof flow (Q) should be corrected to 20C (68F). The initialstraight line portion of the plot defines the region of laminarflow. If the 50-mm head is outside the region of laminar flow,repeat the test procedure using the head of water in themid-region of laminar flow.11.7.1 Compare the data from 11.7 with the apparatuscalibration curve referred

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1