ImageVerifierCode 换一换
格式:PDF , 页数:3 ,大小:66.24KB ,
资源ID:519068      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-519068.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D5176-1991(2003) Standard Test Method for Total Chemically Bound Nitrogen in Water by Pyrolysis and Chemiluminescence Detection《用热解和化学发光检测法测定水中化学键合氮总量的标准试验方法》.pdf)为本站会员(fuellot230)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D5176-1991(2003) Standard Test Method for Total Chemically Bound Nitrogen in Water by Pyrolysis and Chemiluminescence Detection《用热解和化学发光检测法测定水中化学键合氮总量的标准试验方法》.pdf

1、Designation: D 5176 91 (Reapproved 2003)Standard Test Method forTotal Chemically Bound Nitrogen in Water by Pyrolysis andChemiluminescence Detection1This standard is issued under the fixed designation D 5176; the number immediately following the designation indicates the year oforiginal adoption or,

2、 in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of the totalnitrogen content of water

3、 in concentrations from 0.5 to 1000mg/L. Higher nitrogen concentrations may be determined bymaking the proper dilutions.1.2 This test method does not determine molecular nitrogen(N2).1.3 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are for informat

4、iononly.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Refe

5、renced Documents2.1 ASTM Standards:D 1129 Terminology Relating to Water2D 1193 Specification for Reagent Water2D 2777 Practice for Determination of Precision and Bias ofApplicable Methods of Committee D19 on Water23. Terminology3.1 DefinitionsFor definitions of terms used in this testmethod, refer t

6、o Terminology D 1129.3.2 Definition of Term Specific to This Standard:3.2.1 total chemically bound nitrogenall inorganic andorganic nitrogen in the sample, except molecular nitrogen (N2).4. Summary of Test Method4.1 The sample of water is introduced into a stream ofoxygen or inert/oxygen mix flowing

7、 through a quartz pyrolysistube. Oxidative pyrolysis converts chemically bound nitrogento nitric oxide (NO). The gas stream is dried and the NO iscontacted with ozone (O3) producing metastable nitrogendioxide (NO2*). As the NO2* decays, light is emitted anddetected by a photomultiplier tube. The res

8、ulting signal is ameasure of the total chemically bound nitrogen in the sample.5. Significance and Use5.1 This test method is useful for the determination of totalchemically bound nitrogen in wastewaters and other waters.6. Apparatus36.1 Pyrolysis FurnaceAn electric tube furnace capable ofachieving

9、a temperature of 1100C. The furnace may be singleor multizoned and may have common or separate and inde-pendent temperature controls.6.2 Pyrolysis TubeThe pyrolysis tube must be fabricatedfrom quartz and should be designed to ensure completepyrolysis of a wide variety of samples.6.3 Chemiluminescenc

10、e DetectorThe detector shall havea photomultiplier tube capable of sensing the light emission ofthe decaying NO2*. The detector shall have digital display,onboard ozone generator and analog output for data system orstrip chart recorder.6.4 Recorder (optional)The recorder shall be able toaccept a 1 V

11、 full scale signal and to provide a chart speed of 1cm/min.6.5 Microlitre SyringeAny standard series of microlitresyringes with stainless steel needles is acceptable. See manu-facturers instructions for appropriate syringe sizes.6.6 Syringe Drive MechanismThe syringe drive shall becapable of driving

12、 the sample from a microlitre syringe at acontrolled, reproducible rate.6.7 Sample BoatSamples with high concentrations ofsuspended matter or dissolved nonvolatile compounds maytend to plug the syringe needle upon injection into the pyrolysistube. In this case a sample boat of quartz or platinum, wi

13、th orwithout quartz wool, should be used, in conjunction with theappropriate pyrolysis tube. The pyrolysis tube shall allow the1This test method is under the jurisdiction of ASTM Committee D19 on Waterand is the direct responsibility of Subcommittee D19.06 on Methods forAnalysis forOrganic Substance

14、s in Water.Current edition approved March 10, 2003. Published July 2003. Originallyapproved in 1991. Last previous edition approved in 1995 as D 5176 91 (1995).2Annual Book of ASTM Standards, Vol 11.01.3The apparatus described in 6.1-6.7 is manufactured by Antek Instruments, Inc.,Houston, TX and Doh

15、rmann Division of Rosemount Analytical Inc., Santa Clara,CA, and was used in the validation study of this test method.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.introduction of the sample into the boat by microlitre syringewitho

16、ut interrupting the gas flow system.7. Reagents and Materials7.1 Purity of ReagentsReagent grade chemicals shall beused. Unless otherwise indicated, it is intended that all reagentsshall conform to the specifications of the Committee onAnalytical Reagents of the American Chemical Society.4Other grad

17、es may be used, provided it is first determined thatthe reagent is of sufficiently high purity to permit its usewithout lessening the accuracy of the determination.7.2 Purity of WaterUnless otherwise indicated, referencesto water shall be understood to mean reagent water conformingto Specification D

18、 1193, Type I.7.3 Inert Gas, Argon (minimum purity 99.99 %).7.4 Oxygen (minimum purity 99.6 %).7.5 Stock Solution, Pyridine (10 000 mg N/L)Prepare byaccurately weighing 5.647 g of pyridine into a 100 mLvolumetric flask and dilute to 100 mL with water.7.6 Pyridine Solutions, Standard (1000, 500, 100,

19、 50, 10, 5,1, and 0.5 mg N/L)Dilute ten volumes of the stock solution(see 6.5) with 90 volumes of water to prepare a 1000 mg N/Lstandard. Similarly, by serial dilution with water, prepare 500,100, 50, 10, 5, 1, and 0.5 mg N/L standards.8. Preparation of Apparatus8.1 Assemble apparatus according to m

20、anufacturers in-structions.9. Calibration and Standardization9.1 Use the water that was used to prepare the standards asa zero blank standard.9.2 A sample size of 5 to 10 L is sufficient to cover theconcentration range of this test method. The volume of thesample shall be accurately determined.9.3 S

21、yringe InjectionFill the syringe to the 5 L mark andretract the plunger so that the liquid meniscus is at the 1 Lmark. Note the position of the plunger. Insert the syringeneedle through the inlet septum up to the syringe barrel andallow the furnace to burn all nitrogen bearing residue off thesyringe

22、 needle. Reset the detector and inject the sample at acontrolled rate of 1 to 2 L/s. A syringe drive mechanism (see6.6) is strongly recommended. When all sample has beeninjected, withdraw the syringe needle. Retract the plunger sothat the sample meniscus is again at the 1 L point and note theplunger

23、 position. The true amount injected is the differencebetween the two plunger positions.NOTE 1If water samples contain high concentrations of suspendedmatter or dissolved nonvolatile compounds, the syringe needle may tendto plug or the precision and bias of the test method may be degraded. Insuch a c

24、ase, the sample boat system should be used (see 6.7).9.4 Boat InjectionFill the microlitre syringe to the markand inject the sample directly into the boat while holding theneedle in contact with the side of the boat or with the quartzwool.9.5 Determine each calibration standard and the zero blankthr

25、ee times and record the net response from the average ofeach set of standard responses.9.6 By injecting the same volumetric amount of sample foreach determination, the only variables will be total nitrogenconcentration and detector response (digital display). Constructa curve plotting milligrams of

26、N per litre versus detectorresponse. Check the complete calibration curve at least onceper week; check one or two standards daily.10. Procedure10.1 Flush the microlitre syringe several times with theunknown sample. Inject the sample at a controlled rate of 1 to2 g/s as described in 9.3 or inject the

27、 sample into the sampleboat (see 6.7) as described in 9.4.10.2 Set instrument parameters as recommended by manu-facturers. Some changes may be needed to accommodatespecific kinds of samples.11. Calculation11.1 Determine the total chemically bound nitrogen contentof the water sample in milligrams N p

28、er litre by reading off thecalibration curve (see 9.6).12. Precision and Bias12.1 Collaborative TestUsing deionized water as thematrix, a stock solution was prepared containing ammoniumsulfate, potassium nitrate, and pyridine in such proportions thateach compound contributed about one-third of the t

29、otal nitro-gen. Dilutions were made to provide samples of accurately-known concentrations of about 0.5, 1, 10, 100, and 1000 mgN/L. This procedure was repeated, using nitrogen-containingwastewater as the matrix (the wastewater was expected to havea nitrogen content of approximately 20 mg/L, but the

30、actualvalue was found to be about 150 mg/L). The ten samples plusunspiked deionized (DI) water and unspiked wastewater (astrip blanks) were sent to 13 laboratories for analysis intriplicate according to this test method. The laboratories wererequired to make up their own standard solutions, and to u

31、setheir own laboratory water to determine their instrument blank,that they subtracted from their raw results before reportingthem.12.2 Analysis of ResultsOnly nine of the 13 laboratoriessubmitted results for this study. The data were processed asspecified in the 1986 edition of Practice D 2777. The

32、whole ofone laboratorys results for the DI water matrix samples failedthe outlier test.Asingle result from another laboratory was alsorejected as an outlier. One laboratory reported only the averageof its three readings, without standard deviation, and anotherlaboratory did only duplicate runs; the

33、results from these twolaboratories were used where possible. The overall averagevalue for nitrogen in the blank wastewater was calculated bythe collaborative test organizer, who then subtracted it from thereported values for the spiked wastewater samples.4Reagent Chemicals, American Chemical Society

34、 Specifications, AmericanChemical Society, Washington, DC. For suggestions on the testing of reagents notlisted by the American Chemical Society, see Analar Standards for LaboratoryChemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeiaand National Formulary, U.S. Pharmaceutical

35、 Convention, Inc. (USPC), Rockville,MD.D 5176 91 (2003)212.3 PrecisionSee Table 1.12.3.1 DI Water MatrixSingle-operator precision is poorat the low levels (1 mg N/L and lower) and adequate to goodat other levels. Overall precision is poor for the central valuesand very poor for the extremes.12.3.2 W

36、astewater MatrixBoth measures of precisionwere poor to very poor over the whole range tested. This maybe attributed in part to the presence of some floccular sedimentin the matrix water that may not have been picked upconsistently by the syringes used in the test method.12.4 BiasSee Table 1.12.4.1 T

37、he negative bias values for the wastewater matrixsamples are larger than those for the DI water matrix becauseof the subtraction of the N content of the matrix water from theraw data.13. Keywords13.1 chemiluminescence; nitrogen; pyrolysisASTM International takes no position respecting the validity o

38、f any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject to

39、 revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters.

40、Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the address shown below.This standard is c

41、opyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm

42、.org (e-mail); or through the ASTM website(www.astm.org).TABLE 1 Precision and BiasMatrix WaterAmount Added,mg N/LAmount Found,mg N/LNet Amount,Amg N/LPrecisionBias,mg N/LStSoDI 0.40 0.3 . 0.2 0.1 0.1B1.01 0.8 . 0.4 0.3 0.2B11.1 10.1 . 1.5 0.4 1.0B106 109 . 10 1.0 + 31105 1289 . 298 28 + 184BWaste 0.50 150 2 5 4 20.91 151 1 4 2 210.1 161 9 4 2 195.8 257 105 45 9 + 91008 1336 1184 330 43 + 176B. 152 0 18 3 .AAfter subtraction of wastewater matrixs N content.BBias significant at the 5 % level.D 5176 91 (2003)3

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1